Poly(vinyl alcohol) hydrogels have a long and successful history of applications in biomedicine. Historically, these matrices were developed to be nondegradable-limiting their utility to applications as permanent implants. For tissue engineering and drug delivery, herein we develop spontaneously eroding physical hydrogels based on PVA.
View Article and Find Full Text PDFGrowth factors represent highly potent and highly efficacious means of communication to cells. At the same time, these proteins are fragile and relatively small sized--rendering their immobilization and controlled release from biomaterials challenging. In this work, we establish a method to incorporate growth factors into the physical hydrogels based on poly(vinyl alcohol), PVA.
View Article and Find Full Text PDFMacromolecular prodrugs (MPs) are a powerful tool to alleviate side-effects and improve the efficacy of the broad-spectrum antiviral agent ribavirin. In this work, we sought an understanding of what makes an optimal formulation within the macromolecular parameter space--nature of the polymer carrier, average molar mass, drug loading, or a good combination thereof. A panel of MPs based on biocompatible synthetic vinylic and (meth)acrylic polymers was tested in an anti-inflammatory assay with relevance to alleviating inflammation in the liver during hepatitis C infection.
View Article and Find Full Text PDFMany biomedical applications benefit from responsive polymer coatings. The properties of poly(dopamine) (PDA) films can be affected by codepositing dopamine (DA) with the temperature-responsive polymer poly(N-isopropylacrylamide) (pNiPAAm). We characterize the film assembly at 24 and 39 °C using DA and aminated or carboxylated pNiPAAm by a quartz crystal microbalance with dissipation monitoring (QCM-D), X-ray photoelectron spectroscopy, UV-vis, ellipsometry, and atomic force microscopy.
View Article and Find Full Text PDFThis work demonstrates the application of carbohydrate based methacrylate polymer brush, poly(2-lactobionamidoethyl methacrylate), for the purpose of cell adhesion studies. The first part of the work illustrates the effects of the structure of the aminosilane based ATRP initiator layer on the polymerization kinetics of 2-lactobionamidoethyl methacrylate) (LAMA) monomer on thermally oxidized silicon wafer. Both monolayer and multilayered aminosilane precursor layers have been prepared followed by reaction with 2-bromoisobutyrylbromide to form the ATRP initiator layer.
View Article and Find Full Text PDFDrug-eluting engineered surface coatings are of paramount importance for many biomedical applications from implantable devices to tissue engineering. Herein, we present the assembly of lipogels, composite physical hydrogels assembled from poly(vinyl alcohol) and liposomes using thiol-disulfide exchange between end group modified PVA and thiocholesterol containing liposomes, and the response of adhering cells to these coatings. We demonstrate the controlled loading of liposomes into the polymer matrix and the preserved mechanical properties of the lipogels.
View Article and Find Full Text PDFThe ex vivo growth of implantable hepatic or cardiac tissue remains a challenge and novel approaches are highly sought after. We report an approach to use liposomes embedded within multilayered films as drug deposits to deliver active cargo to adherent cells. We verify and characterize the assembly of poly(l-lysine) (PLL)/alginate, PLL/poly(l-glutamic acid), PLL/poly(methacrylic acid) (PMA), and PLL/cholesterol-modified PMA (PMAc) films, and assess the myoblast and hepatocyte adhesion to these coatings using different numbers of polyelectrolyte layers.
View Article and Find Full Text PDFHydrogel biomaterials based on poly(vinyl alcohol), PVA, have an extensive history of biomedical applications, yet in their current form suffer from significant shortcomings, such as a lack of mechanism of biodegradation and poor opportunities in controlled drug release. We investigate physical hydrogels of PVA as surface-adhered materials and present biodegradable matrices equipped with innovative tools in substrate-mediated drug release. Toward the final goal, PVA chains with narrow polydispersities (1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2012
In this work, we characterize physical hydrogels based on poly(vinyl alcohol), PVA, as intelligent biointerfaces for surface-mediated drug delivery. Specifically, we assemble microstructured (μS) surface adhered hydrogels via noncryogenic gelation of PVA, namely polymer coagulation using sodium sulfate (Na(2)SO(4)). We present systematic investigation of concentrations of Na(2)SO(4) as a tool of control over assembly of μS PVA hydrogels and quantify polymer losses and retention within the hydrogels.
View Article and Find Full Text PDFPoly(vinyl alcohol), PVA, and physical hydrogels derived thereof have an excellent safety profile and a successful history of biomedical applications. However, these materials are hardly in the focus of biomedical research, largely due to poor opportunities in nano- and micro-scale design associated with PVA hydrogels in their current form. In this review we aim to demonstrate that with PVA, a (sub)molecular control over polymer chemistry translates into fine-tuned supramolecular association of chains and this, in turn, defines macroscopic properties of the material.
View Article and Find Full Text PDFPhysical hydrogels based on poly(vinyl alcohol), PVA, have an excellent safety profile and a successful history of biomedical applications. However, highly inhomogeneous and macroporous internal organization of these hydrogels as well as scant opportunities in bioconjugation with PVA have largely ruled out micro- and nanoscale control and precision in materials design and their use in (nano)biomedicine. To address these shortcomings, herein we report on the assembly of PVA physical hydrogels via "salting-out", a noncryogenic method.
View Article and Find Full Text PDF