Publications by authors named "Bettina B Nielsen"

The X-ray structure of the ionotropic GluR2 ligand-binding core (GluR2-S1S2J) in complex with the bicyclical AMPA analogue (S)-2-amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]-4-isoxazolyl)propionic acid [(S)-4-AHCP] has been determined, as well as the binding pharmacology of this construct and of the full-length GluR2 receptor. (S)-4-AHCP binds with a glutamate-like binding mode and the ligand adopts two different conformations. The K(i) of (S)-4-AHCP at GluR2-S1S2J was determined to be 185 +/- 29 nM and at full-length GluR2(R)o it was 175 +/- 8 nM.

View Article and Find Full Text PDF

The X-ray structure of a partly self-complementary peptide nucleic acid (PNA) decamer (H-GTAGATCACT-l-Lys-NH(2)) to 2.60 A resolution is reported. The structure is mainly controlled by the canonical Watson-Crick base pairs formed by the self-complementary stretch of four bases in the middle of the decamer (G(4)A(5)T(6)C(7)).

View Article and Find Full Text PDF

Ionotropic glutamate receptors mediate most rapid excitatory synaptic transmission in the mammalian central nervous system, and their involvement in neurological diseases has stimulated widespread interest in their structure and function. Despite a large number of agonists developed so far, few display selectivity among (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionic acid (AMPA)-receptor subtypes. The present study provides X-ray structures of the glutamate receptor 2 (GluR2)-selective partial agonist (S)-2-amino-3-(1,3,5,6,7-pentahydro-2,4-dioxocyclopenta[e] pyrimidin-1-yl) propanoic acid [(S)-CPW399] in complex with the ligand-binding core of GluR2 (GluR2-S1S2J) and with a (Y702F)GluR2-S1S2J mutant.

View Article and Find Full Text PDF