This review examines the association of strains of Escherichia coli with sudden infant death syndrome (SIDS) and the possible role these bacteria play in this enigmatic condition. The review addresses evidence for E. coli in SIDS infants, potential sources of E.
View Article and Find Full Text PDFThe role of bacteria in the causation of sudden infant death syndrome (SIDS) is gaining acceptance. Mainstream research favouring respiratory compromise has failed to provide a plausible pathogenetic mechanism despite many years of investigation and thousands of research papers. Bacterial colonisation of the colon of the human infant is influenced by many factors including age, mode of delivery, diet, environment, and antibiotic exposure.
View Article and Find Full Text PDFThis study characterizes the 21.4 kilobase plasmid pECTm80 isolated from Escherichia coli strain 80, an α hemolytic human clinical diarrhoeal isolate (serotype O108:H-). DNA sequence analysis of pECTm80 revealed it belonged to incompatibility group X1, and contained plasmid partition and toxin-antitoxin systems, an R6K-like triple origin (ori) replication system, genes required for replication regulation, insertion sequences IS1R, ISEc37 and a truncated transposase gene (Tn3-like ΔtnpA) of the Tn3 family, and carried a class 2 integron.
View Article and Find Full Text PDFVerotoxigenic Escherichia coli (VTEC) are a specialized group of E. coli that can cause severe colonic disease and renal failure. Their pathogenicity derives from virulence factors that enable the bacteria to colonize the colon and deliver extremely powerful toxins known as verotoxins (VT) or Shiga toxins (Stx) to the systemic circulation.
View Article and Find Full Text PDFSeveral studies have indicated a possible causative role of toxigenic bacteria in sudden infant death syndrome (SIDS). This study examined the effect of toxigenic E. coli on pregnant and infant mice to determine if these animals could be used as a model for SIDS pathogenesis.
View Article and Find Full Text PDFClass 1 integrons play a role in the emergence of multi-resistant bacteria by facilitating the recruitment of gene cassettes encoding antibiotic resistance genes. 512 E. coli strains sourced from humans (n = 202), animals (n = 304) and the environment (n = 6) were screened for the presence of the intI1 gene.
View Article and Find Full Text PDFAim: To examine the diversity of Escherichia coli serotypes found in the intestinal contents of infants who died of Sudden Infant Death Syndrome (SIDS) compared with that in comparison infants.
Methods And Results: Over the 3-year period, 1989-1991, in South Australia and Victoria (Australia), a total of 687 E. coli isolates from 231 patients with SIDS (348 isolates), 98 infants who had died from other causes (144 isolates) and 160 healthy infants (195 isolates) were studied.
Consistent pathological findings in sudden infant death syndrome (SIDS) are seen which display similarities to the pathogenesis of toxaemic shock and/or sepsis. A key candidate infectious agent that is possibly involved is Escherichia coli, given its universal early colonization of the intestinal tract of infants and an increased frequency of toxigenic and mouse-lethal isolates from SIDS compared with comparison infants. An explanation for these findings has yet to be identified.
View Article and Find Full Text PDFCrit Rev Microbiol
July 2007
Following a brief review of the ecology of Escherichia coli in general, the role of Shiga-Toxigenic (Verocytotoxigenic) E. coli (STEC) as pathogens is addressed. While STEC belonging to the serogroup O157 have been extensively studied and shown to be involved in many cases and outbreaks of human disease, the importance of STEC belonging to other serogroups has not been recognized as much.
View Article and Find Full Text PDFA collection of 366 Escherichia coli strains from 10 host groups and surface waters were tested for the presence of 15 virulence genes associated with strains causing intestinal and extra-intestinal infections. The virulence genes included eaeA, VT1, 2 and 2e, LT1, ST1 and 2, Einv gene, EAgg gene, CNF1 and 2, papC, O111 and O157 side chain LPS. Of the 262 strains obtained from nine different hosts, 39 (15%) carried one or more of these virulence genes.
View Article and Find Full Text PDFIf the acquisition of virulence genes (VGs) for pathogenicity were not solely acquired through horizontal gene transfers of pathogenicity islands, transposons, and phages, then clonal clusters of enterotoxigenic Escherichia coli (ETEC) would contain few or even none of the VGs found in strains responsible for extraintestinal infections. To evaluate this possibility, 47 postweaning diarrhea (PWD) ETEC strains from different geographical origins and 158 commensal E. coli isolates from the gastrointestinal tracts of eight group-housed healthy pigs were screened for 36 extraintestinal and 18 enteric VGs using multiplex PCR assays.
View Article and Find Full Text PDFMultidrug-resistant Escherichia coli (MDREC) expressing AmpC beta-lactamases have emerged as a cause of opportunistic infections in dogs. Following a cluster of extraintestinal infections caused by two distinct clonal groups (CGs) of bla(CMY)-producing MDREC, a 12-month infection control study was undertaken at a veterinary teaching hospital in Brisbane, Australia. Swabs from the rectum of hospitalized dogs (n=780), hospital staff (n=16) and the hospital environment (n=220) were plated onto selective agar to obtain multidrug-resistant (MDR) coliforms.
View Article and Find Full Text PDFAims: The reliability of the O157:H7 ID agar (O157 H7 ID-F) to detect verocytotoxigenic strains of Escherichia coli (VTEC) of serogroup O157 was investigated.
Methods And Results: This medium, designed to detect strains belonging to the clone of VTEC O157:H7/H-, contains carbohydrates and two chromogenic substrates to detect beta-d-galactosidase and beta-d-glucuronidase and sodium desoxycholate to increase selectivity for Gram-negative rods. A total of 347 strains of E.
Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) cells were isolated from 191 fecal samples from cattle with gastrointestinal infections (diagnostic samples) collected in New South Wales, Australia. By using a multiplex PCR, E.
View Article and Find Full Text PDFTwo typical coliforms from an intestinal biopsy from an adult case of bloody diarrhoea carried genes encoding intimin-beta, stx(1) and ehxA, and produced verocytotoxin 1 and enterohaemolysin in culture. Both were biochemically typical Escherichia coli O5 :H(-), apart from producing urease. Such O5 isolates represent a human pathogenic E.
View Article and Find Full Text PDFAim: To study the diversity of commensal Escherichia coli populations shed in faeces of cattle fed on different diets.
Methods And Results: Thirty Brahman-cross steers were initially fed a high grain (80%) diet and then randomly allocated into three dietary treatment groups, fed 80% grain, roughage, or roughage + 50% molasses. Up to eight different E.
As part of a study to determine the effects of water filtration on the incidence of community-acquired gastroenteritis in Melbourne, Australia, we examined fecal samples from patients with gastroenteritis and asymptomatic persons for diarrheagenic strains of Escherichia coli. Atypical strains of enteropathogenic E. coli (EPEC) were the most frequently identified pathogens of all bacterial, viral, and parasitic agents in patients with gastroenteritis.
View Article and Find Full Text PDFFEMS Immunol Med Microbiol
September 2004
Despite the identification of risk factors for sudden infant death syndrome (SIDS) and decreased SIDS rates in many countries, there is still no coherent, widely accepted, mechanistic explanation for SIDS. As an extension of our work on the infectious aetiology of SIDS, we have explored the prediction that infectious agents might reach susceptible infants and babies, via particular sources of food. In this ecological study, we demonstrated significant correlations between SIDS rates and exposure to meat from some sources, and we propose that more detailed studies be carried out.
View Article and Find Full Text PDFShiga toxin-producing Escherichia coli (STEC) strains possessing genes for enterohemolysin (ehxA) and/or intimin (eae), referred to here as complex STEC (cSTEC), are more commonly recovered from the feces of humans with hemolytic uremic syndrome and hemorrhagic colitis than STEC strains that do not possess these accessory virulence genes. Ruminants, particularly cattle and sheep, are recognized reservoirs of STEC populations that may contaminate foods destined for human consumption. We isolated cSTEC strains from the feces of longitudinally sampled pasture-fed sheep, lot-fed sheep maintained on diets comprising various combinations of silage and grain, and sheep simultaneously grazing pastures with cattle to explore the diversity of cSTEC serotypes capable of colonizing healthy sheep.
View Article and Find Full Text PDF