Background: Despite increasing knowledge of the genetic pathophysiology of glaucoma, mutations in known genes account for less than 15% of disease. Gene screening predominantly remains a research tool rather than an essential part of the clinical work-up. We aimed to determine the mutational spectrum and frequency in the genes implicated in glaucoma, in a range of glaucoma and 'glaucoma suspect' (GS) participants, with a positive family history.
View Article and Find Full Text PDFAim: The corneal dystrophies represent a group of clinically and genetically heterogeneous, inherited diseases, often resulting in bilateral opacification of the cornea, and may require penetrating keratoplasty. Mutations in the transforming growth factor beta-induced (TGFBI) gene segregate with a wide range of phenotypically heterogeneous corneal dystrophies. Many of the other dystrophies remain without molecular characterisation.
View Article and Find Full Text PDFPurpose: With advances in phenotyping tools and availability of molecular characterization, an increasing number of phenotypically and genotypically diverse inherited corneal dystrophies are described. We aimed to determine the underlying causative genetic mechanism in a three-generation pedigree affected with a unique anterior membrane corneal dystrophy characterized by early onset recurrent corneal erosions, small discrete focal opacities at the level of Bowman layer and anterior stroma, anterior stromal flecks, and prominent corneal nerves.
Methods: Twenty affected and unaffected members of a three-generation family were examined and extensively clinically characterized including corneal topography and in vivo confocal microscopy, and biological specimens were collected for DNA extraction.
Purpose: Corneal dystrophy of Bowman's layer (CDB) belongs to a group of dystrophies associated with mutations in the transforming growth factor-beta-induced (TGFBI) gene. CDB is further divided into a geographic variant (CDB1/Reis Bücklers, RBCD), and a honeycomb variant (CDB2/Thiel Behnke, TBCD). We undertook mutational analysis of TGFBI in a family with an unusual CDB variant and describe a novel phenotype-genotype association.
View Article and Find Full Text PDF