The KNOTTED1-LIKE HOMEOBOX PROTEIN1 (KD1) gene is highly expressed in flower and leaf abscission zones (AZs), and KD1 was reported to regulate tomato flower pedicel abscission via alteration of the auxin gradient and response in the flower AZ (FAZ). The present work was aimed to further examine how KD1 regulates signaling factors and regulatory genes involved in pedicel abscission, by using silenced KD1 lines and performing a large-scale transcriptome profiling of the FAZ before and after flower removal, using a customized AZ-specific microarray. The results highlighted a differential expression of regulatory genes in the FAZ of KD1-silenced plants compared to the wild-type.
View Article and Find Full Text PDFThe Tomato Hybrid Proline-rich Protein () gene was specifically expressed in the tomato () flower abscission zone (FAZ), and its stable antisense silencing under the control of an abscission zone (AZ)-specific promoter, , significantly inhibited tomato pedicel abscission following flower removal. For understanding the THyPRP role in regulating pedicel abscission, a transcriptomic analysis of the FAZ of -silenced plants was performed, using a newly developed AZ-specific tomato microarray chip. Decreased expression of in the silenced plants was already observed before abscission induction, resulting in FAZ-specific altered gene expression of transcription factors, epigenetic modifiers, post-translational regulators, and transporters.
View Article and Find Full Text PDFIn vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively.
View Article and Find Full Text PDF