Rare autosomal dominant mutations in the gene encoding the keratinocyte signaling molecule CARD14, have been associated with an increased susceptibility to psoriasis, but the physiological impact of CARD14 gain-of-function mutations remains to be fully determined in vivo. Here, we report that heterozygous mice harboring a CARD14 gain-of-function mutation (Card14ΔE138) spontaneously develop a chronic psoriatic phenotype with characteristic scaling skin lesions, epidermal thickening, keratinocyte hyperproliferation, hyperkeratosis, and immune cell infiltration. Affected skin of these mice is characterized by elevated expression of anti-microbial peptides, chemokines, and cytokines (including T helper type 17 cell-signature cytokines) and an immune infiltrate rich in neutrophils, myeloid cells, and T cells, reminiscent of human psoriatic skin.
View Article and Find Full Text PDFThe mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin and its analogs are being increasingly used in solid-organ transplantation. A commonly reported side effect is male subfertility to infertility, yet the precise mechanisms of mTOR interference with male fertility remain obscure. With the use of a conditional mouse genetic approach we demonstrate that deficiency of mTORC1 in the epithelial derivatives of the Wolffian duct is sufficient to cause male infertility.
View Article and Find Full Text PDFThe molecular mechanisms that maintain podocytes and consequently, the integrity of the glomerular filtration barrier are incompletely understood. Here, we show that the class III phosphoinositide 3-kinase vacuolar protein sorting 34 (Vps34) plays a central role in modulating endocytic pathways, maintaining podocyte homeostasis. In mice, podocyte-specific conditional knockout of Vps34 led to early proteinuria, glomerular scarring, and death within 3-9 weeks of age.
View Article and Find Full Text PDF