Objective: In response to high demand and prolonged wait times for cognitive behavioural therapy (CBT) in Ontario, Canada, we developed predictive models to stratify patients into high- or low-intensity treatment, aiming to optimize limited healthcare resources.
Method: Using client records ( = 953) from Ontario Shores Centre for Mental Health Sciences (January 2017-2021), we estimated four binary outcome models to assign patients into complex and standard cases based on the probability of reliable improvement in Patient Health Questionnaire-9 (PHQ-9) and Generalized Anxiety Disorder-7 (GAD-7) scores. We evaluated two choices of cut-offs for patient complexity assignment: models at an ROC (receiver operating characteristic)-derived cut-off and a 0.