Publications by authors named "Bethany L Merenick"

Vascular smooth muscle cells (VSMCs) undergo transcriptionally regulated reversible differentiation in growing and injured blood vessels. This dedifferentiation also contributes to VSMC hyperplasia after vascular injury, including that caused by angioplasty and stenting. Stents provide mechanical support and can contain and release rapamycin, an inhibitor of the mechanistic target of rapamycin complex 1 (mTORC1).

View Article and Find Full Text PDF

The phenotypic plasticity of mature vascular smooth muscle cells (VSMCs) facilitates angiogenesis and wound healing, but VSCM dedifferentiation also contributes to vascular pathologies such as intimal hyperplasia. Insulin/insulin-like growth factor I (IGF-I) is unique among growth factors in promoting VSMC differentiation via preferential activation of phosphatidylinositol 3-kinase (PI3K) and Akt. We have previously reported that rapamycin promotes VSMC differentiation by inhibiting the mammalian target of rapamycin (mTOR) target S6K1.

View Article and Find Full Text PDF

Objective: Interactions between endothelial cells (ECs) and smooth muscle cells (SMCs) are fundamental in diverse cardiovascular processes such as arteriogenesis, atherosclerosis, and restenosis. We aimed to determine the intracellular signaling mechanisms by which ECs promote a differentiated SMC phenotype.

Methods: Bovine thoracic aorta ECs and SMCs were isolated and cultured.

View Article and Find Full Text PDF

Vascular smooth muscle cells (VSMC) in mature, normal blood vessels exhibit a differentiated, quiescent, contractile morphology, but injury induces a phenotypic modulation toward a proliferative, dedifferentiated, migratory phenotype with upregulated extracellular matrix protein synthesis (synthetic phenotype), which contributes to intimal hyperplasia. The mTOR (the mammalian target of rapamycin) pathway inhibitor rapamycin inhibits intimal hyperplasia in animal models and in human clinical trials. We report that rapamycin treatment induces differentiation in cultured synthetic phenotype VSMC from multiple species.

View Article and Find Full Text PDF

The human prostacyclin receptor is a seven-transmembrane alpha-helical G-protein coupled receptor, which plays important roles in both vascular smooth muscle relaxation as well as prevention of blood coagulation. The position of the native ligand-binding pocket for prostacyclin as well as other derivatives of the 20-carbon eicosanoid, arachidonic acid, has yet to be determined. Through the use of prostanoid receptor sequence alignments, site-directed mutagenesis, and the 2.

View Article and Find Full Text PDF