Collagen undergoes many types of post-translational modifications (PTMs), including intracellular modifications and extracellular modifications. Among these PTMs, glycosylation of hydroxylysine (Hyl) is the most complicated. Experimental studies demonstrated that this PTM ceases once the collagen triple helix is formed and that Hyl-O-glycosylation modulates collagen fibrillogenesis.
View Article and Find Full Text PDFHere we report the launch of a web-tool (the GLYCAM-Web GAG Builder, www.glycam.org/gag) for the rapid and straightforward prediction of 3D structural models for glycosaminoglycans (GAGs).
View Article and Find Full Text PDFDefining how a glycan-binding protein (GBP) specifically selects its cognate glycan from among the ensemble of glycans within the cellular glycome is an area of intense study. Powerful insight into recognition mechanisms can be gained from 3D structures of GBPs complexed to glycans; however, such structures remain difficult to obtain experimentally. Here an automated 3D structure generation technique, called computational carbohydrate grafting, is combined with the wealth of specificity information available from glycan array screening.
View Article and Find Full Text PDFDocking algorithms that aim to be applicable to a broad range of ligands suffer reduced accuracy because they are unable to incorporate ligand-specific conformational energies. Here, we develop a set of Carbohydrate Intrinsic (CHI) energy functions that quantify the conformational properties of oligosaccharides, based on the values of their glycosidic torsion angles. The relative energies predicted by the CHI energy functions mirror the conformational distributions of glycosidic linkages determined from a survey of oligosaccharide-protein complexes in the protein data bank.
View Article and Find Full Text PDF