Although nonsteroidal anti-inflammatory drugs are the first line of therapeutics for the treatment of mild to moderate somatic pain, they are not generally considered to be effective for neuropathic pain. In the current study, direct activation of spinal Toll-like 4 receptors (TLR4) by the intrathecal (IT) administration of KDO2 lipid A (KLA), the active component of lipopolysaccharide, elicits a robust tactile allodynia that is unresponsive to cyclooxygenase inhibition, despite elevated expression of cyclooxygenase metabolites in the spinal cord. Intrathecal KLA increases 12-lipoxygenase-mediated hepoxilin production in the lumbar spinal cord, concurrent with expression of the tactile allodynia.
View Article and Find Full Text PDFBackground: Neuraxial anesthesia is utilized in children of all ages. Local anesthetics produce dose-dependent toxicity in certain adult models, but the developing spinal cord may also be susceptible to drug-induced apoptosis. In postnatal rodents, we examined the effects of intrathecal levobupivacaine on neuropathology and long-term sensorimotor outcomes.
View Article and Find Full Text PDFPreviously, we observed significant increases in spinal 12-lipoxygenase (LOX) metabolites, in particular, hepoxilins, which contribute to peripheral inflammation-induced tactile allodynia. However, the enzymatic sources of hepoxilin synthase (HXS) activity in rats remain elusive. Therefore, we overexpressed each of the 6 rat 12/15-LOX enzymes in HEK-293T cells and measured by LC-MS/MS the formation of HXB3, 12-HETE, 8-HETE, and 15-HETE from arachidonic acid (AA) at baseline and in the presence of LOX inhibitors (NDGA, AA-861, CDC, baicalein, and PD146176) vs.
View Article and Find Full Text PDFPeripheral inflammation initiates changes in spinal nociceptive processing leading to hyperalgesia. Previously, we demonstrated that among 102 lipid species detected by LC-MS/MS analysis in rat spinal cord, the most notable increases that occur after intraplantar carrageenan are metabolites of 12-lipoxygenases (12-LOX), particularly hepoxilins (HXA(3) and HXB(3)). Thus, we examined involvement of spinal LOX enzymes in inflammatory hyperalgesia.
View Article and Find Full Text PDFLipid molecules play an important role in regulating the sensitivity of sensory neurons and enhancing pain perception, and growing evidence indicates that the effect occurs both at the site of injury and in the spinal cord. Using high-throughput mass spectrometry methodology, we sought to determine the contribution of spinal bioactive lipid species to inflammation-induced hyperalgesia in rats. Quantitative analysis of CSF and spinal cord tissue for eicosanoids, ethanolamides and fatty acids revealed the presence of 102 distinct lipid species.
View Article and Find Full Text PDFPharmacological studies indicate that spinal p38 mitogen-activated protein kinase plays a role in the development of hyperalgesia. We investigated whether either the spinal isoform p38alpha or p38beta is involved in peripheral inflammation evoked pain state and increased expression of spinal COX-2. Using intrathecal antisense oligonucleotides, we show that hyperalgesia is prevented by downregulation of p38beta but not p38alpha, whereas increases in spinal COX-2 protein expression at 8 hours are mediated by both p38alpha and beta isoforms.
View Article and Find Full Text PDF