Bioluminescence imaging enables the sensitive tracking of cell populations and the visualization of biological processes in living systems. Bioluminescent luciferase/luciferin pairs with far-red and near-infrared emission benefit from the reduced competitive absorption by blood and tissue while also facilitating multiplexing strategies. Luciferins with extended π-systems, such as AkaLumine and recently reported CouLuc-1 and -3, can be used for bioluminescence imaging in this long wavelength regime.
View Article and Find Full Text PDFMulticomponent bioluminescence imaging requires an expanded collection of tissue-penetrant probes. Toward this end, we generated a new class of near-infrared (NIR) emitting coumarin luciferin analogues (CouLuc-3s). The scaffolds were easily accessed from commercially available dyes.
View Article and Find Full Text PDFEngineered luciferase-luciferin pairs have expanded the number of cellular targets that can be visualized in tandem. While light production relies on selective processing of synthetic luciferins by mutant luciferases, little is known about the origin of selectivity. The development of new and improved pairs requires a better understanding of the structure-function relationship of bioluminescent probes.
View Article and Find Full Text PDFMulti-component bioluminescence imaging requires an expanded collection of luciferase-luciferin pairs that emit far-red or near-infrared light. Toward this end, we prepared a new class of luciferins based on a red-shifted coumarin scaffold. These probes (CouLuc-1s) were accessed in a two-step sequence direct modification of commercial dyes.
View Article and Find Full Text PDFFluorescent noncanonical amino acids (fNCAAs) could serve as starting points for the rational design of protein-based fluorescent sensors of biological activity. However, efforts toward this goal are likely hampered by a lack of atomic-level characterization of fNCAAs within proteins. Here, we describe the spectroscopic and structural characterization of five streptavidin mutants that contain the fNCAA l-(7-hydroxycoumarin-4-yl)ethylglycine (7-HCAA) at sites proximal to the binding site of its substrate, biotin.
View Article and Find Full Text PDFThe relationship between protein motions (i.e., dynamics) and enzymatic function has begun to be explored in β-lactamases as a way to advance our understanding of these proteins.
View Article and Find Full Text PDF