The Health and Environmental Sciences Institute Developmental and Reproductive Toxicology (HESI-DART) group held a hybrid in-person and virtual workshop in Washington, DC, in 2022. The workshop was entitled, "Interpretation of DART in Regulatory Contexts and Frameworks." There were 154 participants (37 in person and 117 virtual) across 9 countries.
View Article and Find Full Text PDFThe rabbit prenatal developmental toxicity study is an international testing requirement for the identification and characterisation of the potential hazards of chemicals to human health. The importance of the rabbit for the detection of chemical teratogens is without question. However, the rabbit when used as a laboratory test species presents unique challenges affecting data interpretation.
View Article and Find Full Text PDFThis review investigated which patterns of thyroid- and brain-related effects are seen in rats upon gestational/lactational exposure to 14 substances causing thyroid hormone imbalance by four different modes-of-action (inhibition of thyroid peroxidase, sodium-iodide symporter and deiodinase activities, enhancement of thyroid hormone clearance) or to dietary iodine deficiency. Brain-related parameters included motor activity, cognitive function, acoustic startle response, hearing function, periventricular heterotopia, electrophysiology and brain gene expression. Specific modes-of-action were not related to specific patterns of brain-related effects.
View Article and Find Full Text PDFThe current understanding of thyroid-related adverse outcome pathways (AOPs) with adverse neurodevelopmental outcomes in mammals has been reviewed. This served to establish if standard rodent toxicity test methods and assays allow identifying thyroid-related modes-of-action potentially leading to adverse neurodevelopmental outcomes, and the human relevance of effects - in line with the European Commission's Endocrine Disruptor Criteria. The underlying hypothesis is that an understanding of the key events of relevant AOPs provides insight into differences in incidence, magnitude, or species sensitivity of adverse outcomes.
View Article and Find Full Text PDFPreviously, we demonstrated that exposure to some diortho-phthalate esters during sexual differentiation disrupts male reproductive development by reducing fetal rat testis testosterone production (T Prod) and gene expression in a dose-related manner. The objectives of the current project were to expand the number of test compounds that might reduce fetal T Prod, including phthalates, phthalate alternatives, pesticides, and drugs, and to compare reductions in T Prod with altered testis mRNA expression. We found that PEs that disrupt T Prod also reduced expression of a unique "cluster" of mRNAs for about 35 genes related to sterol transport, testosterone and insulin-like hormone 3 hormone syntheses, and lipoprotein signaling and cholesterol synthesis.
View Article and Find Full Text PDFNumerous guideline studies required for regulatory toxicity testing now include the measurement of the thyroid hormones 3,3',5-triiodo-L-thyronine (T3) and L-thyroxine (T4) in blood serum from rodents. A rapid, high-throughput method for the determination of the thyroid hormones T4 and T3 is reported. Sample preparation is done using a 96-well microtiter plate format.
View Article and Find Full Text PDFThe derivation of an apical endpoint point of departure (POD) from animal-intensive testing programs has been the traditional cornerstone of human health risk assessment. Replacement of in vivo chronic studies with novel approaches, such as toxicogenomics, holds promise for future alternative testing paradigms that significantly reduce animal testing. We hypothesized that a toxicogenomic POD following a 14 day exposure in the rat would approximate the most sensitive apical endpoint POD derived from a battery of chronic, carcinogenicity, reproduction and endocrine guideline toxicity studies.
View Article and Find Full Text PDFThyroid hormones (THs; T3 and T4) play a role in development of cardiovascular, reproductive, immune and nervous systems. Thus, interpretation of TH changes from rodent studies (during pregnancy, in fetuses, neonates, and adults) is critical in hazard characterization and risk assessment. A roundtable session at the 2017 Society of Toxicology (SOT) meeting brought together academic, industry and government scientists to share knowledge and different perspectives on technical and data interpretation issues.
View Article and Find Full Text PDFDietary administration is a relevant route of oral exposure for regulatory toxicity studies of agrochemicals as it mimics potential human intake of the chemical via treated crops and commodities. Moreover, dietary administration of test compounds during a developmental toxicity study can deliver a prolonged and stable systemic exposure to the embryo or fetus at all stages of development. In this study, strategies were employed to optimize rabbit test material consumption via diet.
View Article and Find Full Text PDFIn vitro estrogen receptor assays are valuable tools for identifying environmental samples and chemicals that display estrogenic activity. However, in vitro potency cannot necessarily be extrapolated to estimates of in vivo potency because in vitro assays are currently unable to fully account for absorption, distribution, metabolism, and excretion. To explore this issue, we calculated relative potency factors (RPF), using 17α-ethinyl estradiol (EE2) as the reference compound, for several chemicals and mixtures in the T47D-KBluc estrogen receptor transactivation assay.
View Article and Find Full Text PDFPhthalate esters (PEs) constitute a large class of compounds that are used for many consumer product applications. Many of the C2-C7 di-ortho PEs reduce fetal testicular hormone and gene expression levels in rats resulting in adverse effects seen later in life but it appears that relatively large reductions in fetal testosterone (T) levels and testis gene expression may be required to adversely affect reproductive development (Hannas, B. R.
View Article and Find Full Text PDFMayer-Rokitansky-Kuster-Hauser (MRKH) syndrome is characterized by uterine and vaginal canal aplasia in normal karyotype human females and is a syndrome with poorly defined etiology. Reproductive toxicity of phthalate esters (PEs) occurs in rat offspring exposed in utero, a phenomenon that is better studied in male offspring than females. The current study reports female reproductive tract malformations in the Sprague-Dawley rat similar to those characteristic of MRKH syndrome, following in utero exposure to a mixture of 5 PEs.
View Article and Find Full Text PDFMale rat fetuses exposed to certain phthalate esters (PEs) during sexual differentiation display reproductive tract malformations due to reductions in testosterone (T) production and the expression of steroidogenesis- and INSL3-related genes. In the current study, we used a 96-well real-time PCR array containing key target genes representing sexual determination and differentiation, steroidogenesis, gubernaculum development, and androgen signaling pathways to rank the relative potency of several PEs. We executed dose-response studies with diisobutyl (DIBP), dipentyl (DPeP), dihexyl (DHP), diheptyl (DHeP), diisononyl (DINP), or diisodecyl phthalate (DIDP) and serial dilutions of a mixture of nine phthalates.
View Article and Find Full Text PDFSeveral phthalate esters have been linked to the Phthalate Syndrome, affecting male reproductive development when administered to pregnant rats during in utero sexual differentiation. The goal of the current study was to enhance understanding of this class of compounds in the Sprague Dawley (SD) fetal rat following exposure on gestational days (GDs) 14-18 by determining the relative potency factors for several phthalates on fetal testes endpoints, the effects of a nine phthalate mixture on fetal testosterone (T) production, and differences in SD and Wistar (W) strain responses of fetal T production and testicular gene expression to di(2-ethylhexyl) phthalate (DEHP). We determined that diisobutyl phthalate (DIBP) and diisoheptyl phthalate (DIHP) reduced fetal testicular T production with similar potency to DEHP, whereas diisononyl phthalate (DINP) was 2.
View Article and Find Full Text PDFThe induction of vitellogenin in oviparous vertebrates has become the gold standard biomarker of exposure to estrogenic chemicals in the environment. This biomarker of estrogen exposure also has been used in arthropods, however, little is known of the factors that regulate the expression of vitellogenin in these organisms. We investigated changes in accumulation of mRNA products of the vitellogenin gene Vtg2 in daphnids (Daphnia magna) exposed to a diverse array of chemicals.
View Article and Find Full Text PDFPhthalate esters (PEs) constitute a large class of plasticizer compounds that are widely used for many consumer product applications. Ten or more members of the PE class of compounds are known to induce male fetal endocrine toxicity and postnatal reproductive malformations by disrupting androgen production during the sexual differentiation period of development. An early study conducted in the rat pubertal model suggested that dipentyl phthalate (DPeP) may be a more potent testicular toxicant than some more extensively studied phthalates.
View Article and Find Full Text PDFBackground: Nitrate and nitrite (jointly referred to herein as NO(x)) are ubiquitous environmental contaminants to which aquatic organisms are at particularly high risk of exposure. We tested the hypothesis that NO(x) undergo intracellular conversion to the potent signaling molecule nitric oxide resulting in the disruption of endocrine-regulated processes.
Methodology/principal Findings: These experiments were performed with insect cells (Drosophila S2) and whole organisms Daphnia magna.
Endocrine signal transduction occurs through cascades that involve the action of both ligand-dependent and ligand-independent nuclear receptors. In insects, two such nuclear receptors are HR3 and E75 that interact to transduce signals initiated by ecdysteroids. We have cloned these nuclear receptors from the crustacean Daphnia pulex to assess their function as regulators of gene transcription in this ecologically and economically important group of organisms.
View Article and Find Full Text PDFEcdysteroids initiate signaling along multiple pathways that regulate various aspects of development, maturation, and reproduction in arthropods. Signaling often involves the induction of downstream transcription factors that either positively or negatively regulate aspects of the pathway. We tested the hypothesis that crustaceans express the nuclear receptors HR3 (ortholog to vertebrate ROR) and E75 (ortholog to vertebrate rev-erb) in response to ecdysteroid signaling.
View Article and Find Full Text PDF