Publications by authors named "Bethany Friedman"

Article Synopsis
  • The ongoing GUARDIAN study aims to evaluate the feasibility and acceptability of genome sequencing as an addition to traditional newborn screening across diverse racial and ethnic groups in New York City.
  • As of the interim analysis covering 4,000 newborns, 72% of approached families consented to participate, reflecting a representative sample of various racial and ethnic demographics.
  • The study primarily assessed the screen-positive rate, enrollment rate, and successful sequencing completion, with a large majority of families opting to screen for both early-onset genetic conditions and additional neurodevelopmental disorders.
View Article and Find Full Text PDF

Summary: SOX5 plays an important role in chondrogenesis and chondrocyte differentiation. SOX5 defects in humans (often deletions) result in a Lamb-Shaffer syndrome (LSS), presenting with speech delay, behavioral problems and minor dysmorphic features. We present a patient with idiopathic short stature (ISS) who carried a heterozygous novel variant in SOX5.

View Article and Find Full Text PDF

Purpose: Exome sequencing (ES) is increasingly used for the diagnosis of rare genetic disease. However, some pathogenic sequence variants within the exome go undetected due to the technical difficulty of identifying them. Mobile element insertions (MEIs) are a known cause of genetic disease in humans but have been historically difficult to detect via ES and similar targeted sequencing methods.

View Article and Find Full Text PDF

Purpose: Clinical laboratories performing exome or genome sequencing (ES/GS) are familiar with the challenges associated with proper consenting for and reporting of medically actionable secondary findings based on recommendations from the American College of Medical Genetics and Genomics (ACMG). Misattributed parentage is another type of unanticipated finding a laboratory may encounter during family-based ES/GS; however, there are currently no professional recommendations related to the proper consenting for and reporting of misattributed parentage encountered during ES/GS.

Methods: We surveyed 10 clinical laboratories offering family-based ES/GS regarding their consent language, discovery, and reporting of misattributed parentage.

View Article and Find Full Text PDF

The skill sets of genetic counselors are strongly utilized in industry, as evidenced by 20% of genetic counselors reporting employment within industry in 2016. In addition, industry genetic counselors are expanding their roles, taking on new responsibilities, and creating new opportunities. These advances have impacted the profession as a whole including, but not limited to, genetic counseling training curricula, a shift back to genetic counseling directly to patients, and a growing influence of genetic counselors on industry test offerings.

View Article and Find Full Text PDF

The use of sequencing technologies has greatly expanded in both research and clinical settings. The generation of voluminous datasets has raised several issues regarding data sharing and access. Current regulations require clinical laboratories and some research laboratories to provide access to test data, including sequencing data, directly to patients upon request.

View Article and Find Full Text PDF

PurposeThe aim of this study was to determine the diagnostic yield of whole-exome sequencing (WES) in fetuses with ultrasound anomalies that resulted in fetal demise or pregnancy termination. The results were also utilized to aid in the identification of candidate genes for fetal development and to expand the clinical phenotype of known genetic conditions.MethodsWES was performed on specimens from 84 deceased fetuses.

View Article and Find Full Text PDF

We identified five unrelated individuals with significant global developmental delay and intellectual disability (ID), dysmorphic facial features and frequent microcephaly, and de novo predicted loss-of-function variants in chromosome alignment maintaining phosphoprotein 1 (CHAMP1). Our findings are consistent with recently reported de novo mutations in CHAMP1 in five other individuals with similar features. CHAMP1 is a zinc finger protein involved in kinetochore-microtubule attachment and is required for regulating the proper alignment of chromosomes during metaphase in mitosis.

View Article and Find Full Text PDF

Neurodevelopmental disorders (NDD) are common, with 1-3% of general population being affected, but the etiology is unknown in most individuals. Clinical whole-exome sequencing (WES) has proven to be a powerful tool for the identification of pathogenic variants leading to Mendelian disorders, among which NDD represent a significant percentage. Performing WES with a trio-approach has proven to be extremely effective in identifying de novo pathogenic variants as a common cause of NDD.

View Article and Find Full Text PDF

Purpose: We report the diagnostic yield of whole-exome sequencing (WES) in 3,040 consecutive cases at a single clinical laboratory.

Methods: WES was performed for many different clinical indications and included the proband plus two or more family members in 76% of cases.

Results: The overall diagnostic yield of WES was 28.

View Article and Find Full Text PDF

Background: Rare de novo mutations have been implicated as a significant cause of idiopathic intellectual disability. Large deletions encompassing 10p11.23 have been implicated in developmental delay, behavioural abnormalities and dysmorphic features, but the genotype-phenotype correlation was not delineated.

View Article and Find Full Text PDF

Nemaline myopathy (NM) is a genetically and clinically heterogeneous disorder resulting from a disruption of the thin filament proteins of the striated muscle sarcomere. The disorder is typically characterized by muscle weakness including the face, neck, respiratory, and limb muscles and is clinically classified based on the age of onset and severity. Mutations in the ACTA1 gene contribute to a significant proportion of NM cases.

View Article and Find Full Text PDF

Cerebral cavernous malformations (CCM) are congenital vascular anomalies predominantly of the central nervous system but may include lesions in other tissues such as the retina, skin, and liver. These hamartomatous dysplasias, generally occurring sporadically, consist of dynamic clustered convoluted capillary cavities without intervening brain parenchyma that may lead to headaches, seizures, paresis, cerebral hemorrhages and focal neurological deficits. Familial forms of CCM, inherited in an autosomal dominant manner with incomplete penetrance and variable expression, are attributed to mutations in three genes, CCM1, CCM2 and CCM3.

View Article and Find Full Text PDF

Improving the affinity of a high-affinity protein-protein interaction is a challenging problem that has practical applications in the development of therapeutic biomolecules. We used a combination of structure-based computational methods to optimize the binding affinity of an antibody fragment to the I-domain of the integrin VLA1. Despite the already high affinity of the antibody (Kd approximately 7 nM) and the moderate resolution (2.

View Article and Find Full Text PDF