Rationale: TRV130 (oliceridine; N-[(3-methoxythiophen-2-yl)methyl]-2-[(9 R)-9-pyridin-2-yl-6-oxaspiro[4.5]decan-9-yl]ethanamine) is a novel mu opioid receptor (MOR) agonist that preferentially activates G-protein versus β-arrestin signaling pathways coupled to MORs. Prevailing evidence suggests that TRV130 and other G-protein-biased MOR agonists may produce therapeutic analgesic effects with reduced adverse effects compared to existing MOR agonists.
View Article and Find Full Text PDFThe 6β-N-heterocyclic naltrexamine derivative, NAP, has been demonstrated to be a peripherally selective mu opioid receptor modulator. To further improve peripheral selectivity of this highly potent ligand, its pyridal ring was quaterinized with benzyl bromide to produce BNAP. In radioligand binding assay, the Ki of BNAP for MOR was 0.
View Article and Find Full Text PDFCannabinoid CB1 receptors (CB1Rs) mediate the presynaptic effects of endocannabinoids in the central nervous system (CNS) and most behavioral effects of exogenous cannabinoids. Cannabinoid receptor-interacting protein 1a (CRIP1a) binds to the CB1R C-terminus and can attenuate constitutive CB1R-mediated inhibition of Ca(2+) channel activity. We now demonstrate cellular colocalization of CRIP1a at neuronal elements in the CNS and show that CRIP1a inhibits both constitutive and agonist-stimulated CB1R-mediated guanine nucleotide-binding regulatory protein (G-protein) activity.
View Article and Find Full Text PDFRepeated Δ(9)-tetrahydrocannabinol (THC) administration produces cannabinoid type 1 receptor (CB₁R) desensitization and downregulation, as well as tolerance to its in vivo pharmacological effects. However, the magnitude of CB₁R desensitization varies by brain region, with CB₁Rs in the striatum and its output nuclei undergoing less desensitization than other regions. A growing body of data indicates that regional differences in CB₁R desensitization are produced, in part, by THC-mediated induction of the stable transcription factor, ΔFosB, and subsequent regulation of CB₁Rs.
View Article and Find Full Text PDF