Molecular details for the impact of DNA damage on folding of potential G-quadruplex sequences (PQSs) to noncanonical DNA structures involved in gene regulation are poorly understood. Here, the effects of DNA base damage and strand breaks on PQS folding kinetics were studied in the context of the promoter sequence embedded between two DNA duplex anchors, termed a duplex-G-quadruplex-duplex (DGD) motif. This DGD scaffold imposes constraints on the PQS folding process that more closely mimic those found in genomic DNA.
View Article and Find Full Text PDFMolecular details for DNA damage impact on the folding of potential G-quadruplex sequences (PQS) to non-canonical DNA structures that are involved in gene regulation are poorly understood. Here, the effects of DNA base damage and strand breaks on PQS folding kinetics were studied in the context of the promoter sequence embedded between two DNA duplex anchors, referred to as a duplex-G-quadruplex-duplex (DGD) motif. This DGD scaffold imposes constraints on the PQS folding process that more closely mimic those found in genomic DNA.
View Article and Find Full Text PDFOrganotin compounds specifically target vicinal dithiols, thereby inhibiting the function of essential enzymes. Here, we present the NMR binding studies of trimethyltin (TMT) and dimethyltin (DMT) chlorides with a linear peptide (ILGCWCYLR) derived from the membrane protein stannin (SNN). We show that this peptide is able to dealkylate TMT and bind DMT, adopting a stable type-I beta-turn conformation.
View Article and Find Full Text PDFPardaxins are a class of ichthyotoxic peptides isolated from fish mucous glands. Pardaxins physically interact with cell membranes by forming pores or voltage-gated ion channels that disrupt cellular functions. Here we report the high-resolution structure of synthetic pardaxin Pa4 in sodium dodecylphosphocholine micelles, as determined by (1)H solution NMR spectroscopy.
View Article and Find Full Text PDFIn this Communication, we report evidence for the dealkylation of trialkyltin compounds by a short linear peptide extracted from a small membrane protein (stannin) involved in cellular apoptosis and containing a CXC motif. We show that (a) organotin binding induces the formation of a beta-turn in the linear peptide, (b) both cysteines are necessary for the dealkylation reaction, and (c) stable 1:1 complexes are formed between the peptide and diorganotins that can be observed by ESI-MS. Organotin degradation by biological dithiols may be responsible for both the delayed activity of these toxins in humans and the organotin resistance mechanisms in bacteria.
View Article and Find Full Text PDFPhospholamban (PLB) and Sarcolipin (SLN) are integral membrane proteins that regulate muscle contractility via direct interaction with the Ca-ATPase in cardiac and skeletal muscle, respectively. The molecular details of these protein-protein interactions are as yet undetermined. Solution and solid-state NMR spectroscopies have proven to be effective tools for deciphering such regulatory mechanisms to a high degree of resolution; however, large quantities of pure recombinant protein are required for these studies.
View Article and Find Full Text PDF