Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and plays an important role in regulating neuronal excitability. GABA reuptake from the synapse is dependent on specific transporters - mainly GAT-1, GAT-3 and BGT-1 (GATs). This study is the first to show alterations in the expression of the GATs in the Alzheimer's disease (AD) hippocampus, entorhinal cortex and superior temporal gyrus.
View Article and Find Full Text PDFBackground: Huntington's disease (HD) is characterised by variable symptoms and neuropathology of the basal ganglia and cortex. Previously, we have shown that the pattern of pyramidal cell loss in 8 different cortical regions correlates with the phenotypic variability in HD. In the primary motor and anterior cingulate cortices, the pattern of interneuron degeneration correlates with pyramidal cell death and variable HD symptom profiles.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, which causes progressive and eventually fatal loss of motor function. Here, we describe genetic and pathologic characterization of brain tissue banked from 19 ALS patients over nearly 20 years at the Department of Anatomy and the Centre for Brain Research, University of Auckland, New Zealand. We screened for mutations in SOD1, TARDBP, FUS, and C9ORF72 genes and for neuropathology caused by phosphorylated TDP-43, dipeptide repeats (DPRs), and ubiquilin.
View Article and Find Full Text PDFImpairment of brain-glucose uptake and brain-copper regulation occurs in Alzheimer's disease (AD). Here we sought to further elucidate the processes that cause neurodegeneration in AD by measuring levels of metabolites and metals in brain regions that undergo different degrees of damage. We employed mass spectrometry (MS) to measure metabolites and metals in seven post-mortem brain regions of nine AD patients and nine controls, and plasma-glucose and plasma-copper levels in an ante-mortem case-control study.
View Article and Find Full Text PDFObjective: Numerous studies have focused on striatal neurodegeneration in Huntington disease (HD). In comparison, the globus pallidus (GP), a main striatal output nucleus, has received less focus in HD research. This study characterizes the pattern of neurodegeneration in 3 subdivisions of the human GP, and its relation to clinical symptomatology.
View Article and Find Full Text PDFJ Parkinsons Dis
September 2016
Background: String vessels are collapsed basement membrane without endothelium and have no function in circulation. String vessel formation contributes to vascular degeneration in Alzheimer disease. By comparing to age-matched control cases we have recently reported endothelial degeneration in brain capillaries of human Parkinson disease (PD).
View Article and Find Full Text PDFHuntington's disease is an autosomal dominant neurodegenerative disease characterized by neuronal degeneration in the basal ganglia and cerebral cortex, and a variable symptom profile. Although progressive striatal degeneration is known to occur and is related to symptom profile, little is known about the cellular basis of symptom heterogeneity across the entire cerebral cortex. To investigate this, we have undertaken a double blind study using unbiased stereological cell counting techniques to determine the pattern of cell loss in six representative cortical regions from the frontal, parietal, temporal, and occipital lobes in the brains of 14 Huntington's disease cases and 15 controls.
View Article and Find Full Text PDFObjective: The cellular basis of variable symptoms in Huntington disease (HD) is unclear. One important possibility is that degeneration of the interneurons in the cerebral cortex, which play a critical role in modulating cortical output to the basal ganglia, might play a significant role in the development of variable symptomatology in HD. This study aimed to examine whether symptom variability in HD is specifically associated with variable degeneration of cortical interneurons.
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
January 2011
Cerebral amyloid angiopathy related inflammation (CAA-I), previously described under various names, is a treatable encephalopathy usually occurring in older adults. Here, three patients are described with histopathologically confirmed CAA-I, and summarised data from the published literature are presented. CAA-I has a characteristic combination of clinical and radiological features.
View Article and Find Full Text PDFHuntington's disease is an autosomal dominant inherited neurodegenerative disease with motor symptoms that are variably co-expressed with mood and cognitive symptoms, and in which variable neuronal degeneration is also observed in the basal ganglia and the cerebral cortex. We have recently shown that the variable symptomatology in Huntington's disease correlates with the variable compartmental pattern of GABAA receptor and cell loss in the striatum. To determine whether the phenotypic variability in Huntington's disease is also related to variable neuronal degeneration in the cerebral cortex, we undertook a double-blind study using unbiased stereological cell counting methods to determine the pattern of cell loss in the primary motor and anterior cingulate cortices in the brains of 12 cases of Huntington's disease and 15 controls, and collected detailed data on the clinical symptomatology of the patients with Huntington's disease from family members and clinical records.
View Article and Find Full Text PDFVariable phenotype is common in neurological disorders with single-gene inheritance patterns. In Huntington's disease, mood and cognitive symptoms are variably co-expressed with motor symptoms. There is also variable degeneration of neurons in the two major neurochemical compartments of the striatum, the striosomes and the extrastriosomal matrix.
View Article and Find Full Text PDFHuntington's disease (HD) pathology is well understood at a histological level but a comprehensive molecular analysis of the effect of the disease in the human brain has not previously been available. To elucidate the molecular phenotype of HD on a genome-wide scale, we compared mRNA profiles from 44 human HD brains with those from 36 unaffected controls using microarray analysis. Four brain regions were analyzed: caudate nucleus, cerebellum, prefrontal association cortex [Brodmann's area 9 (BA9)] and motor cortex [Brodmann's area 4 (BA4)].
View Article and Find Full Text PDFPrevious studies in the rodent brain have characterised the cell types present in the subependymal layer, however the general organisation and cellular morphology of the adult human subependymal layer has not been demonstrated previously. In this study, we have demonstrated that the normal human brain subependymal layer contains three morphologically distinct types of cells, A, B and C type cells. The type A cells resembling migrating neuroblasts were located in the superficial part of the subependymal layer, type B cells resembling glial cells were evenly distributed throughout the subependymal layer and caudate nucleus, and type C cells that resembled progenitor cells were located in the deeper regions of the subependymal layer close to the caudate nucleus.
View Article and Find Full Text PDF