The presence of heterogeneity in susceptibility, differences between hosts in their likelihood of becoming infected, can fundamentally alter disease dynamics and public health responses, for example, by changing the final epidemic size, the duration of an epidemic, and even the vaccination threshold required to achieve herd immunity. Yet, heterogeneity in susceptibility is notoriously difficult to detect and measure, especially early in an epidemic. Here we develop a method that can be used to detect and estimate heterogeneity in susceptibility given contact by using contact tracing data, which are typically collected early in the course of an outbreak.
View Article and Find Full Text PDFWe develop the mathematical structure of the neutral coalescent with both replication-dependent and replication-independent mutations. This allows us to explain and quantify empirical results that explore differences in genetic diversity in bacterial cultures with different growth rates. We also derive an unbiased and consistent estimator for the replication-independent mutation rate that is based on a comparison of total single nucleotide polymorphism counts for two independent well-mixed cultures with different growth rates.
View Article and Find Full Text PDFThe danger posed by emerging infectious diseases necessitates the development of new tools that can mitigate the risk of animal pathogens spilling over into the human population. One promising approach is the development of recombinant viral vaccines that are transmissible, and thus capable of self-dissemination through hard to reach populations of wild animals. Indeed, mathematical models demonstrate that transmissible vaccines can greatly reduce the effort required to control the spread of zoonotic pathogens in their animal reservoirs, thereby limiting the chances of human infection.
View Article and Find Full Text PDFGenetically engineered organisms are prone to evolve in response to the engineering. This evolution is often undesirable and can negatively affect the purpose of the engineering. Methods that maintain the stability of engineered genomes are therefore critical to the successful design and use of genetically engineered organisms.
View Article and Find Full Text PDF