Objective: To describe the pharmacokinetics and adverse effects of intravenous (IV) and sublingual (SL) buprenorphine in horses, and to determine the effect of sampling site on plasma concentrations after SL administration.
Study Design: Randomized crossover experiment; prospective study.
Animals: Eleven healthy adult horses between 6 and 20 years of age and weighing 487-592 kg.
Objective: To determine elimination kinetics of tilmicosin in milk following intramammary administration in lactating dairy cattle.
Design: Prospective pharmacokinetic study.
Animals: 6 lactating dairy cows.
The experimental objectives were to identify a vehicle which produces a homogenous formulation when combined with the anesthetic solution sevoflurane and understand the dermal absorption of sevoflurane in silastic membranes and amphibian skin in vitro utilizing a flow-through diffusion system. Seven vehicles were evaluated in varying ratios with 5 formulations resulting in the desired homogenous consistency for practical application. Sevoflurane diffusion across silastic membranes was influenced by pluronic/lecithin organogel (PLO), pluronic F 127 20% gel, and sterile lube.
View Article and Find Full Text PDFMelamine-contaminated pet food was recently added as a supplement to livestock feed. There is little or no information concerning the pharmacokinetics of melamine in livestock, and the aim of this study was to obtain pharmacokinetic parameters for this contaminant in pigs. Melamine was administered intravenously to five weanling pigs at a dose of 6.
View Article and Find Full Text PDFJ Toxicol Environ Health A
November 2007
Jet fuel components are known to partition into skin and produce occupational irritant contact dermatitis (OICD) and potentially adverse systemic effects. The purpose of this study was to determine how jet fuel components partition (1) from solvent mixtures into diverse membrane-coated fibers (MCFs) and (2) from biological media into MCFs to predict tissue distribution. Three diverse MCFs, polydimethylsiloxane (PDMS, lipophilic), polyacrylate (PA, polarizable), and carbowax (CAR, polar), were selected to simulate the physicochemical properties of skin in vivo.
View Article and Find Full Text PDFCutan Ocul Toxicol
January 2007
Cutting fluids are widely used in the metal-machining industry to lubricate and reduce heat generation when metals are cut by a metal-cutting tool. These cutting fluids have caused occupational irritant contact dermatitis (OICD), and many of the additives used in these cutting fluid mixtures are thought to be responsible for OICD in workers. The purpose of this study was to assess single or various combinations of these additives in initiating the OICD response following an acute 8-hour exposure in porcine skin in vivo and in vitro using the isolated perfused porcine skin flap (IPPSF) and human epidermal keratinocytes (HEK).
View Article and Find Full Text PDFCutting fluids can become contaminated with metals (e.g., nickel, Ni) and nitrosamines (e.
View Article and Find Full Text PDFLinear alkylbenzene sulfonate (LAS) is added to cutting fluid formulations to enhance the performance of metal machining operations, but this surfactant can cause contact dermatitis in workers involved in these operations. The purpose of this study was to determine how cutting fluid additives influence dermal disposition of 14C-LAS in mineral oil- or polyethylene glycol 200 (PEG)-based mixtures when topically applied to silastic membranes and porcine skin in an in vitro flow-through diffusion cell system. 14C-LAS mixtures were formulated with three commonly used cutting fluid additives; 0 or 2% triazine (TRI), 0 or 5% triethanolamine (TEA), and 0 or 5% sulfurized ricinoleic acid (SRA).
View Article and Find Full Text PDF