In women as well as in mice, oocytes exhibit decreased developmental potential (oocyte quality) with advanced age. Our current data implicate alterations in the levels of oocyte ceramide and associated changes in mitochondrial function and structure as being prominent elements contributing to reduced oocyte quality. Both ROS levels and ATP content were significantly reduced in aged oocytes.
View Article and Find Full Text PDFUnraveling molecular pathways responsible for regulation of early embryonic development is crucial for our understanding of female infertility. Maternal determinants that control the transition from oocyte to embryo are crucial molecules that govern developmental competence of the newly conceived zygote. We describe a series of defects that are triggered by a disruption of maternal lethal effect gene, Nlrp5.
View Article and Find Full Text PDFThe high miscarriage rates observed in women smokers raises the possibility that chemicals in cigarette smoke could be detrimental to embryo development. Previous studies have established that polycyclic aromatic hydrocarbons (PAHs), transactivate the arylhydrocarbon receptor (AhR), leading to cell death. Herein we show that PAH exposure results in murine embryo cell death, acting as a potential mechanism underlying cigarette-smoking-induced pregnancy loss.
View Article and Find Full Text PDFHuman preimplantation embryo development is prone to high rates of early embryo wastage, particularly under current in vitro culture conditions. There are many possible underlying causes for embryo demise, including DNA damage, poor embryo metabolism and the effect of suboptimal culture media, all of which could result in an imbalance in gene expression and the failed execution of basic embryonic decisions. In view of the complex interactions involved in embryo development, a thorough understanding of these parameters is essential to improving embryo quality.
View Article and Find Full Text PDF