A blood test to detect stroke and its causes would be particularly useful in babies, young children, and patients in intensive care units and for emergencies when imaging is difficult to obtain or is unavailable. Whole genome microarrays were used to show specific gene expression profiles in rats 24 hours after ischemic and hemorrhagic stroke, hypoxia, and hypoglycemia. These proof-of-principle studies revealed that groups of genes (called gene profiles) can distinguish ischemic stroke patients from controls within 3 to 24 hours after the strokes.
View Article and Find Full Text PDFWhole genome expression microarrays can be used to study gene expression in blood, which comes in part from leukocytes, immature platelets, and red blood cells. Since these cells are important in the pathogenesis of stroke, RNA provides an index of these cellular responses to stroke. Our studies in rats have shown specific gene expression changes 24 hours after ischemic stroke, hemorrhage, status epilepticus, hypoxia, hypoglycemia, global ischemia, and following brief focal ischemia that simulated transient ischemic attacks in humans.
View Article and Find Full Text PDFBackground: Studies show that white matter hyperintensities, regardless of location, primarily affect frontal lobe metabolism and function. This report investigated how regional white matter integrity (measured as fractional anisotropy [FA]) relates to brain metabolism, to unravel the complex relationship between white matter changes and brain metabolism.
Objective: To elucidate the relationship between white matter integrity and gray matter metabolism using diffusion tensor imaging and fluorodeoxyglucose-positron emission tomography in a cohort of 16 subjects ranging from normal to demented (age, >55 years).
Background: Alzheimer disease and cerebrovascular disease affect elderly persons through alterations in brain structure and metabolism that produce cognitive decline. Understanding how each disease contributes to dementia is essential from both a pathophysiologic and diagnostic perspective.
Objective: To elucidate how baseline cognitive function (episodic memory and executive function) and brain anatomy (white matter hyperintensities and hippocampal volume) are associated with baseline (positron emission tomography-1 [PET1]) and longitudinal (PET2) glucose metabolism in 38 subjects older than 55 years ranging from normal cognition, cognitive impairment without dementia, and dementia.
The antioxidant capabilities of phosphatidylethanolamine plasmalogen (PlsEtn), in vivo, against lipid peroxidation were investigated via acute phosphine (PH(3)) administration in rats. Oxidative stress was assessed from measures of malondialdehyde and various enzyme activities, while NMR analyses of lipid and aqueous tissue extracts provided metabolic information in cerebellum, brainstem, and cortex. Brainstem had the highest basal [PlsEtn], and showed only moderate PH(3)-induced oxidative damage with no loss of ATP.
View Article and Find Full Text PDFObjective: This study was designed to test the hypothesis that baseline glucose metabolism and medial temporal lobe brain volumes are predictive of cognitive decline in normal older people.
Methods: We performed positron emission tomography using [18F]fluorodeoxyglucose and structural magnetic resonance imaging at baseline in 60 cognitively normal community-dwelling older subjects who were part of a longitudinal cohort study. Subjects were followed for a mean of 3.