Publications by authors named "Beth C Poulton"

Insecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to functionally characterise the carboxylesterase, CCEae3A, the elevated expression of which has been implicated in temephos resistance in Aedes aegypti and Aedes albopictus larvae.

View Article and Find Full Text PDF

Mosquito-borne viruses including dengue, Zika, and Chikungunya viruses, and parasites such as malaria and endanger health and economic security around the globe, and emerging mosquito-borne pathogens have pandemic potential. However, the rapid spread of insecticide resistance threatens our ability to control mosquito vectors. Larvae of were screened with the Medicines for Malaria Venture Pandemic Response Box, an open-source compound library, using INVAPP, an invertebrate automated phenotyping platform suited to high-throughput chemical screening of larval motility.

View Article and Find Full Text PDF

Pyrethroid-impregnated nets have contributed significantly to halving the burden of malaria but resistance threatens their future efficacy and the pipeline of new insecticides is short. Here we report that an invertebrate automated phenotyping platform (INVAPP), combined with the algorithm Paragon, provides a robust system for measuring larval motility in Anopheles gambiae (and An. coluzzi) as well as Aedes aegypti with the capacity for high-throughput screening for new larvicides.

View Article and Find Full Text PDF
Article Synopsis
  • The GAL4-UAS system is a genetic analysis tool that allows researchers to study gene function by controlling the expression of specific genes in a tissue-specific manner using a two-step crossing of transgenic lines.
  • This system is flexible and can be applied to various tissues, making it useful for examining the effects of gene manipulation, even when it affects the fitness of the organism.
  • The article discusses its adaptation for the malaria vector Anopheles gambiae, outlines procedures for creating and analyzing GAL4-UAS lines, and includes detailed protocols for genetic crosses and embryonic development studies, as well as suggestions for enhancing the system using CRISPR/Cas9.
View Article and Find Full Text PDF