Publications by authors named "Beth A Lopour"

Objective: The discovery and validation of electroencephalography (EEG) biomarkers often rely on visual identification of waveforms. However, bias toward visually striking events restricts the search space for new biomarkers, and low interrater reliability can limit rigorous validation. We present a data-driven approach to biomarker discovery called scalp EEG Pattern Identification and Categorization (s-EPIC), which enables automated, unsupervised identification of EEG waveforms.

View Article and Find Full Text PDF

Objective: High-frequency oscillations (HFOs) are a promising prognostic biomarker of surgical outcome in patients with epilepsy. Their rates of occurrence and morphology have been studied extensively using recordings from electrodes of various geometries. While electrode size is a potential confounding factor in HFO studies, it has largely been disregarded due to a lack of consistent evidence.

View Article and Find Full Text PDF

Objective: High frequency oscillations (HFOs) are a biomarker of the seizure onset zone (SOZ) and can be visually or automatically detected. In theory, one can optimize an automated algorithm's parameters to maximize SOZ localization accuracy; however, there is no consensus on whether or how this should be done. Therefore, we optimized an automated detector using visually identified HFOs and evaluated the impact on SOZ localization accuracy.

View Article and Find Full Text PDF

Objective: We set out to evaluate whether response to treatment for epileptic spasms is associated with specific candidate computational EEG biomarkers, independent of clinical attributes.

Methods: We identified 50 children with epileptic spasms, with pre- and post-treatment overnight video-EEG. After EEG samples were preprocessed in an automated fashion to remove artifacts, we calculated amplitude, power spectrum, functional connectivity, entropy, and long-range temporal correlations (LRTCs).

View Article and Find Full Text PDF

Objective: Identification of EEG waveforms is critical for diagnosing Lennox-Gastaut Syndrome (LGS) but is complicated by the progressive nature of the disease. Here, we assess the interrater reliability (IRR) among pediatric epileptologists for classifying EEG waveforms associated with LGS.

Methods: A novel automated algorithm was used to objectively identify epochs of EEG with transient high power, which were termed events of interest (EOIs).

View Article and Find Full Text PDF

During normal childhood development, functional brain networks evolve over time in parallel with changes in neuronal oscillations. Previous studies have demonstrated differences in network topology with age, particularly in neonates and in cohorts spanning from birth to early adulthood. Here, we evaluate the developmental changes in EEG functional connectivity with a specific focus on the first 2 years of life.

View Article and Find Full Text PDF

Intracranial electroencephalogram (iEEG) plays a critical role in the treatment of neurological diseases, such as epilepsy and Parkinson's disease, as well as the development of neural prostheses and brain computer interfaces. While electrode geometries vary widely across these applications, the impact of electrode size on iEEG features and morphology is not well understood. Some insight has been gained from computer simulations, as well as experiments in which signals are recorded using electrodes of different sizes concurrently in different brain regions.

View Article and Find Full Text PDF

Early diagnosis and treatment are critical for young children with infantile spasms (IS), as this maximizes the possibility of the best possible child-specific outcome. However, there are major barriers to achieving this, including high rates of misdiagnosis or failure to recognize the seizures, medication failure, and relapse. There are currently no validated tools to aid clinicians in assessing objective diagnostic criteria, predicting or measuring medication response, or predicting the likelihood of relapse.

View Article and Find Full Text PDF

. High frequency oscillations (HFOs) recorded by intracranial electrodes have generated excitement for their potential to help localize epileptic tissue for surgical resection. However, the number of HFOs per minute (i.

View Article and Find Full Text PDF

The infant brain is rapidly developing, and these changes are reflected in scalp electroencephalography (EEG) features, including power spectrum and sleep spindle characteristics. These biomarkers not only mirror infant development, but they are also altered by conditions such as epilepsy, autism, developmental delay, and trisomy 21. Prior studies of early development were generally limited by small cohort sizes, lack of a specific focus on infancy (0-2 years), and exclusive use of visual marking for sleep spindles.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on using delta-gamma phase-amplitude coupling in EEG to help identify and assess severity in children with infantile spasms.
  • Researchers created an automated EEG preprocessing pipeline that cleans data using techniques like artifact subspace reconstruction (ASR) and independent component analysis (ICA).
  • Results showed that while the pipeline significantly reduced signal noise, the delta-gamma modulation index (MI) effectively distinguished between children with spasms and normal controls, especially during sleep.
View Article and Find Full Text PDF

People with schizophrenia often experience a profound lack of motivation for social affiliation-a facet of negative symptoms that detrimentally impairs functioning. However, the mechanisms underlying social affiliative deficits remain poorly understood, particularly under realistic social contexts. Here, we investigated subjective reports and electroencephalography (EEG) functional connectivity in schizophrenia during a live social interaction.

View Article and Find Full Text PDF

Objective: Favorable neurodevelopmental outcomes in epileptic spasms (ES) are tied to early diagnosis and prompt treatment, but uncertainty in the identification of the disease can delay this process. Therefore, we investigated five categories of computational electroencephalographic (EEG) measures as markers of ES.

Methods: We measured 1) amplitude, 2) power spectra, 3) Shannon entropy and permutation entropy, 4) long-range temporal correlations, via detrended fluctuation analysis (DFA) and 5) functional connectivity using cross-correlation and phase lag index (PLI).

View Article and Find Full Text PDF

Functional connectivity networks are valuable tools for studying development, cognition, and disease in the infant brain. In adults, such networks are modulated by the state of consciousness and the circadian rhythm; however, it is unknown if infant brain networks exhibit similar variation, given the unique temporal properties of infant sleep and circadian patterning. To address this, we analyzed functional connectivity networks calculated from long-term EEG recordings (average duration 20.

View Article and Find Full Text PDF

While interest toward caloric restriction (CR) in various models of brain injury has increased in recent decades, studies have predominantly focused on the benefits of chronic or intermittent CR. The effects of ultra-short, including overnight, CR on acute ischemic brain injury are not well studied. Here, we show that overnight caloric restriction (75% over 14 h) prior to asphyxial cardiac arrest and resuscitation (CA) improves survival and neurological recovery as measured by, behavioral testing on neurological deficit scores, faster recovery of quantitative electroencephalography (EEG) burst suppression ratio, and complete prevention of neurodegeneration in multiple regions of the brain.

View Article and Find Full Text PDF

Scalp high-frequency oscillations (HFOs) are a promising biomarker of epileptogenicity in infantile spasms (IS) and many other epilepsy syndromes, but prior studies have relied on visual analysis of short segments of data due to the prevalence of artifacts in EEG. Here we set out to robustly characterize the rate and spatial distribution of HFOs in large datasets from IS subjects using fully automated HFO detection techniques.We prospectively collected long-term scalp EEG data from 12 subjects with IS and 18 healthy controls.

View Article and Find Full Text PDF

Objective: Studies of high frequency oscillations (HFOs) in epilepsy have primarily tested the HFO rate as a biomarker of the seizure onset zone (SOZ), but the rate varies over time and is not robust for all individual subjects. As an alternative, we tested the performance of HFO amplitude as a potential SOZ biomarker using two automated detection algorithms.

Method: HFOs were detected in intracranial electroencephalogram (iEEG) from 11 patients using a machine learning algorithm and a standard amplitude-based algorithm.

View Article and Find Full Text PDF

High-frequency oscillations (HFOs) in intracranial electroencephalography (EEG) are a promising biomarker of the epileptogenic zone and tool for surgical planning. Many studies have shown that a high rate of HFOs (number per minute) is correlated with the seizure-onset zone, and complete removal of HFO-generating brain regions has been associated with seizure-free outcome after surgery. In order to use HFOs as a biomarker, these transient events must first be detected in electrophysiological data.

View Article and Find Full Text PDF

The disconnection hypothesis of schizophrenia says that symptoms are explained by dysfunctional connections across a wide range of brain networks. Despite some support for this hypothesis, there have been mixed findings. One reason for these may be the multidimensional nature of schizophrenia symptoms.

View Article and Find Full Text PDF

Objective: High-frequency oscillations (HFOs) are a promising biomarker for the epileptogenic zone. However, no physiological definition of an HFO has been established, so detection relies on the empirical definition of an HFO derived from visual observation. This can bias estimates of HFO features such as amplitude and duration, thereby hindering their utility as biomarkers.

View Article and Find Full Text PDF

Objective: Functional connectivity networks (FCNs) based on interictal electroencephalography (EEG) can identify pathological brain networks associated with epilepsy. FCNs are altered by interictal epileptiform discharges (IEDs), but it is unknown whether this is due to the morphology of the IED or the underlying pathological activity. Therefore, we characterized the impact of IEDs on the FCN through simulations and EEG analysis.

View Article and Find Full Text PDF

In recent years there has been increasing interest in applying network science tools to EEG data. At the 2018 American Epilepsy Society conference in New Orleans, LA, the yearly session of the Engineering and Neurostimulation Special Interest Group focused on emerging, translational technologies to analyze seizure networks. Each speaker demonstrated practical examples of how network tools can be utilized in clinical care and provide additional data to help care for patients with intractable epilepsy.

View Article and Find Full Text PDF

Detrended Fluctuation Analysis (DFA) is a statistical estimation algorithm used to assess long-range temporal dependence in neural time series. The algorithm produces a single number, the DFA exponent, that reflects the strength of long-range temporal correlations in the data. No methods have been developed to generate confidence intervals for the DFA exponent for a single time series segment.

View Article and Find Full Text PDF

High frequency oscillations (HFOs) > 80 Hz are a promising biomarker of epileptic tissue. Recent evidence has shown that spontaneous HFOs can be recorded from the scalp, but detection of these electrographic events remains a challenge. Here, we modified a simple automatic detector, used originally for intracranial EEG (iEEG) recordings, to detect ripples and fast ripples in scalp EEG.

View Article and Find Full Text PDF