Many aspects of the complex interaction between human immunodeficiency virus type 1 (HIV-1) and the human immune system remain elusive. Our objective was to study these interactions, focusing on the specific roles of dendritic cells (DCs). DCs enhance HIV-1 infection processes as well as promote an antiviral immune response.
View Article and Find Full Text PDFLymphoid tissues are sites of soluble and cell-associated antigen sampling of peripheral tissues, and they are key compartments for the generation of cellular and humoral immune responses. Hilar lymph nodes (HiLNs), which drain the lungs, were examined to understand the effects of simian immunodeficiency virus (SIV) infection on this compartment of the immune system. Histologic and messenger RNA (mRNA) expression profiling approaches were used to determine the numbers, types, and distributions of SIV viral RNA cells and to identify differentially expressed genes in HiLNs during SIV infection.
View Article and Find Full Text PDFMonocytes and macrophages play a central role in the pathogenesis of human immunodeficiency virus (HIV)-associated dementia. They represent prominent targets for HIV infection and are thought to facilitate viral neuroinvasion and neuroinflammatory processes. However, many aspects regarding monocyte brain recruitment in HIV infection remain undefined.
View Article and Find Full Text PDFPulmonary infections and dysfunction are frequent outcomes during the development of immunodeficiency associated with human immunodeficiency virus type 1 (HIV-1) infection, and obtaining a better understanding of the immunologic changes that occur in lungs following HIV-1 infection will provide a foundation for the development of further intervention strategies. We sought here to identify changes in the pulmonary immune environment that arise during simian immunodeficiency virus (SIV) infection of rhesus macaques, which serves as an excellent model system for HIV-1 infection and disease. To examine the gene expression profiles of macaque lung tissues following infection with the pathogenic SIV/DeltaB670 isolate, we performed cDNA microarray hybridizations with lung total RNAs using two commercially available cDNA arrays and a custom-fabricated, immunologically focused macaque cDNA microarray.
View Article and Find Full Text PDFDendritic cells (DCs) are potent antigen-presenting cells that likely play multiple roles in human immunodeficiency virus type 1 (HIV-1) pathogenesis. We used the simian immunodeficiency virus (SIV)/macaque model to study the effects of infection on homeostatic chemokine expression and DC localization directly in secondary lymphoid tissues. SIV infection altered the expression of chemokines (CCL19/MIP-3beta, CCL21/ 6Ckine, and CCL20/MIP-3alpha) and of chemokine receptors (CCR7 and CCR6) that drive DC trafficking.
View Article and Find Full Text PDFThe extent to which simian immunodeficiency virus (SIV) replication in lung tissues contributes to the pool of viruses replicating during acute infection is incompletely understood. To address this issue, in situ hybridization was used to examine SIV replication in multiple lobes of lung from rhesus macaques infected with pathogenic SIV. Despite widespread viral replication in lymphoid and intestinal tissues, the lungs during acute infection harbored rare productively infected cells.
View Article and Find Full Text PDFChemokines are important mediators of cell trafficking during immune inductive and effector activities, and dysregulation of their expression might contribute to the pathogenesis of human immunodeficiency virus type 1 and the related simian immunodeficiency virus (SIV). To understand better the effects of SIV infection on lymphoid tissues in rhesus macaques, we examined chemokine messenger RNA (mRNA) expression patterns by using DNA filter array hybridization. Of the 34 chemokines examined, the interferon gamma (IFN-gamma)-inducible chemokine CXC chemokine ligand 9/monokine induced by interferon-gamma (CXCL9/Mig) was one of the most highly up-regulated chemokines in rhesus macaque spleen tissue early after infection with pathogenic SIV.
View Article and Find Full Text PDFIn situ hybridization detection of viral RNAs in formaldehyde-fixed tissue specimens is used frequently to characterize the extent of viral replication within host tissues. The ability to determine the level of expression of viral RNAs in situ is dependent upon many factors including the extent of cross-linking during fixation, the pretreatment regimen utilized to relieve the effects of cross-linking, and the hybridization and wash protocols. In efforts to improve our ability to detect cells infected productively by simian immunodeficiency virus (SIV) in rhesus macaque tissues, the effects of unconventionally high (40 degrees C) and more standard low (4 degrees C) temperature fixation in 4% paraformaldehyde/phosphate buffered saline were tested empirically on in situ hybridization signals.
View Article and Find Full Text PDF