In the ciliate Paramecium, precise excision of numerous internal eliminated sequences (IESs) from the somatic genome is essential at each sexual cycle. DNA double-strands breaks (DSBs) introduced by the PiggyMac endonuclease are repaired in a highly concerted manner by the non-homologous end joining (NHEJ) pathway, illustrated by complete inhibition of DNA cleavage when Ku70/80 proteins are missing. We show that expression of a DNA-binding-deficient Ku70 mutant (Ku70-6E) permits DNA cleavage but leads to the accumulation of unrepaired DSBs.
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
December 2023
SUMMARYCiliated protozoa undergo large-scale developmental rearrangement of their somatic genomes when forming a new transcriptionally active macronucleus during conjugation. This process includes the fragmentation of chromosomes derived from the germline, coupled with the efficient healing of the broken ends by telomere addition. Here, we review what is known of developmental chromosome fragmentation in ciliates that have been well-studied at the molecular level (, , , , and ).
View Article and Find Full Text PDFMultinucleate cells are found in many eukaryotes, but how multiple nuclei coordinate their functions is still poorly understood. In the cytoplasm of the ciliate Paramecium tetraurelia, two micronuclei (MIC) serving sexual reproduction coexist with a somatic macronucleus (MAC) dedicated to gene expression. During sexual processes, the MAC is progressively destroyed while still ensuring transcription, and new MACs develop from copies of the zygotic MIC.
View Article and Find Full Text PDFWith its nuclear dualism, the ciliate constitutes a unique model to study how host genomes cope with transposable elements (TEs). harbors two germline micronuclei (MICs) and a polyploid somatic macronucleus (MAC) that develops from one MIC at each sexual cycle. Throughout evolution, the MIC genome has been continuously colonized by TEs and related sequences that are removed from the somatic genome during MAC development.
View Article and Find Full Text PDFGene duplication and diversification drive the emergence of novel functions during evolution. Because of whole genome duplications, ciliates from the Paramecium aurelia group constitute a remarkable system to study the evolutionary fate of duplicated genes. Paramecium species harbor two types of nuclei: a germline micronucleus (MIC) and a somatic macronucleus (MAC) that forms from the MIC at each sexual cycle.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) are the most toxic DNA lesions given their oncogenic potential. Nevertheless, programmed DSBs (prDSBs) contribute to several biological processes. Formation of prDSBs is the 'price to pay' to achieve these essential biological functions.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) induced by genotoxic agents can cause cell death or contribute to chromosomal instability, a major driving force of cancer. By contrast, Spo11-dependent DSBs formed during meiosis are aimed at generating genetic diversity. In eukaryotes, CtIP and the Mre11 nuclease complex are essential for accurate processing and repair of both unscheduled and programmed DSBs by homologous recombination (HR).
View Article and Find Full Text PDFThe domestication of transposable elements has repeatedly occurred during evolution and domesticated transposases have often been implicated in programmed genome rearrangements, as remarkably illustrated in ciliates. In , PiggyMac (Pgm), a domesticated PiggyBac transposase, carries out developmentally programmed DNA elimination, including the precise excision of tens of thousands of gene-interrupting germline Internal Eliminated Sequences (IESs). Here, we report the discovery of five groups of distant Pgm-like proteins (PgmLs), all able to interact with Pgm and essential for its nuclear localization and IES excision genome-wide.
View Article and Find Full Text PDFThe piggyBac transposase (PB) is distinguished by its activity and utility in genome engineering, especially in humans where it has highly promising therapeutic potential. Little is known, however, about the structure-function relationships of the different domains of PB. Here, we demonstrate in vitro and in vivo that its C-terminal Cysteine-Rich Domain (CRD) is essential for DNA breakage, joining and transposition and that it binds to specific DNA sequences in the left and right transposon ends, and to an additional unexpectedly internal site at the left end.
View Article and Find Full Text PDFBackground: The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system.
View Article and Find Full Text PDFDuring sexual processes, the ciliate Paramecium eliminates 25-30% of germline DNA from its somatic genome. DNA elimination includes excision of ∼45 000 short, single-copy internal eliminated sequences (IESs) and depends upon PiggyMac (Pgm), a domesticated piggyBac transposase that is essential for DNA cleavage at IES ends. Pgm carries a core transposase region with a putative catalytic domain containing three conserved aspartic acids, and a downstream cysteine-rich (CR) domain.
View Article and Find Full Text PDFThe third international conference on Transposable Elements (ICTE) was held 16-19 April 2016 in Saint Malo, France. Organized by the French Transposition Community (Research group of the CNRS: "Mobile genetic elements: from mechanism to populations, an integrative approach") and the French Society of Genetics, the conference's goal was to bring together researchers who study transposition in diverse organisms, using multiple experimental approaches. The meeting gathered 180 participants from all around the world.
View Article and Find Full Text PDFBecause of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs) in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline) nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs).
View Article and Find Full Text PDFProgrammed genome rearrangements in the ciliate Paramecium provide a nice illustration of the impact of transposons on genome evolution and plasticity. During the sexual cycle, development of the somatic macronucleus involves elimination of ∼30% of the germline genome, including repeated DNA (e.g.
View Article and Find Full Text PDFDuring somatic differentiation, physiological DNA double-strand breaks (DSB) can drive programmed genome rearrangements (PGR), during which DSB repair pathways are mobilized to safeguard genome integrity. Because of their unique nuclear dimorphism, ciliates are powerful unicellular eukaryotic models to study the mechanisms involved in PGR. At each sexual cycle, the germline nucleus is transmitted to the progeny, but the somatic nucleus, essential for gene expression, is destroyed and a new somatic nucleus differentiates from a copy of the germline nucleus.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) are harmful lesions leading to genomic instability or diversity. Non-homologous end-joining (NHEJ) is a prominent DSB repair pathway, which has long been considered to be error-prone. However, recent data have pointed to the intrinsic precision of NHEJ.
View Article and Find Full Text PDFAn international conference on Transposable Elements (TEs) was held 21-24 April 2012 in Saint Malo, France. Organized by the French Transposition Community (GDR Elements Génétiques Mobiles et Génomes, CNRS) and the French Society of Genetics (SFG), the conference's goal was to bring together researchers from around the world who study transposition in diverse organisms using multiple experimental approaches. The meeting drew more than 217 attendees and most contributed through poster presentations (117), invited talks and short talks selected from poster abstracts (48 in total).
View Article and Find Full Text PDFInsertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events.
View Article and Find Full Text PDFSequences related to transposons constitute a large fraction of extant genomes, but insertions within coding sequences have generally not been tolerated during evolution. Thanks to their unique nuclear dimorphism and to their original mechanism of programmed DNA elimination from their somatic nucleus (macronucleus), ciliates are emerging model organisms for the study of the impact of transposable elements on genomes. The germline genome of the ciliate Paramecium, located in its micronucleus, contains thousands of short intervening sequences, the IESs, which interrupt 47% of genes.
View Article and Find Full Text PDFDuring the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5' overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing.
View Article and Find Full Text PDFLike all ciliates, Paramecium tetraurelia is a unicellular eukaryote that harbors two kinds of nuclei within its cytoplasm. At each sexual cycle, a new somatic macronucleus (MAC) develops from the germ line micronucleus (MIC) through a sequence of complex events, which includes meiosis, karyogamy, and assembly of the MAC genome from MIC sequences. The latter process involves developmentally programmed genome rearrangements controlled by noncoding RNAs and a specialized RNA interference machinery.
View Article and Find Full Text PDFProteins of the Argonaute family are small RNA carriers that guide regulatory complexes to their targets. The family comprises two major subclades. Members of the Ago subclade, which are present in most eukaryotic phyla, bind different classes of small RNAs and regulate gene expression at both transcriptional and post-transcriptional levels.
View Article and Find Full Text PDF