Minerals such as calcium carbonate, which is prevalent in marble and limestone, are present naturally in rocks. Both physicochemical processes and microbial processes can result in the creation of calcium carbonate in nature, as is well documented. In this study, microbiologically induced calcite precipitation potential of three different Travertine-type water sources (Pamukkale Travertine Spring (PTS), Pamukkale Travertine Terraces (PTT), and Red Travertine of Karahayit (RTK)) using three different incubation media (NB, NB3, and ATCC1832) were investigated.
View Article and Find Full Text PDFIn the anaerobic digestion (AD) process there are some difficulties in maintaining process stability due to the complexity of the system. The variability of the raw material coming to the facility, temperature fluctuations and pH changes as a result of microbial processes cause process instability and require continuous monitoring and control. Increasing continuous monitoring, and internet of things applications within the scope of Industry 4.
View Article and Find Full Text PDFThe usage of fossil fuels results in a high amount of greenhouse gas (GHG) emissions and renewable green energy requirements entail saving ecological balance. Therefore, microalgae cultivation is widespread as a suitable raw material to produce renewable and sustainable fuel. Mathematical models are useful tools for the estimation of different conditions of a system.
View Article and Find Full Text PDFDue to population growth and global warming, the use of the sea water reverse osmosis process to obtain freshwater is increasing rapidly. A sustainable method with low environmental impact is limited for the management of brine with a high salt content, which is released as a result of the process. Some microalgae species can grow in salty environments and produce β-carotene.
View Article and Find Full Text PDFIn Istanbul, which is surrounded by the sea on 3 sides, thousands of tons of seaweed that have formed naturally every year are washed ashore. In this study, the usability of these seaweeds which are landfilling already in fertilizer production was discussed. Liquid fertilizer production was carried out using 3 different physical and 4 different biological methods, and the produced fertilizers were diluted in 5 different ratios (1%, 10%, 25%, 50%, and 100%) and applied to cress seed.
View Article and Find Full Text PDFBiomass obtained from microalgae research studies gained momentum in recent years because of their extensive application potential in multiple industries such as high-value nutraceuticals, bioproducts, cosmetics, animal feed industries, and biofuels while being a sustainable and environmentally friendly option. Although they have high biomass yields and rapid growth rates there are some limitations and challenges that remain for large-scale commercialized cultivation and harvesting methods of microalgae. Since there are multiple pathways related to efficient cultivation and harvesting methods to be viable, this study adopted, TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), a multicriteria decision-making tool, to find the most acceptable alternative by using excel spreadsheets to evaluate the information that is derived from literature and pilot-scale studies.
View Article and Find Full Text PDFFluidized bed bioreactors (FBR) are characterized by two-phase mixture of fluid and solid, in which the bed of solid particles is fluidized by means of downward or upward recirculation stream. FBRs are widely used for multiple environmental engineering solutions, such as wastewater treatment, as well as some industrial applications. FBR offers many benefits such as compact bioreactor size due to short hydraulic retention time, long biomass retention on the carrier, high conversion rates due to fully mixed conditions and consequently high mass transfer rates, no channelling of flow, dilution of influent concentrations due to recycle flow, suitability for enrichment of microbes with low K values.
View Article and Find Full Text PDFMicrobial fuel cells (MFCs) convert electrochemical energy into electrical energy immediately and have a big potential usage for the same time wastewater treatment and energy recovery via electro-active microorganisms. However, MFCs must be efficiently optimized due to its limitations such as high cost and low power production. Finding new materials to increase the cell performance and reduce cost for MFC anodes is mandatory.
View Article and Find Full Text PDFThe performance of upflow multitube microbial fuel cell (UMFC) from membrane concentrate of domestic wastewater (50% concentrate or a volume to concentration ratio of 2) has been investigated in a laboratory test. The test found that the UMFC with the tin-coated copper mesh and coil spring under different hydraulic retention times (HRTs) produced maximum electricity of 916 ± 200 mW/m (61 mW/m) at an HRT of 0.75 day with a 78% soluble chemical oxygen demand (sCOD) removal efficiency and 3% and 20% Coulombic efficiencies (CEs).
View Article and Find Full Text PDFPerformance of cathode materials in microbial fuel cell (MFC) from dairy wastewater has been investigated in laboratory tests. Both cyclic voltammogram experiments and MFC tests showed that Pt-Ni cathode much better than pure Pt cathode. MFC with platinum cathode had the maximum power density of 0.
View Article and Find Full Text PDF