Understanding how cells respond differently to perturbation is crucial in cell biology, but existing methods often fail to accurately quantify and interpret heterogeneous single-cell responses. Here we introduce the perturbation-response score (PS), a method to quantify diverse perturbation responses at a single-cell level. Applied to single-cell perturbation datasets such as Perturb-seq, PS outperforms existing methods in quantifying partial gene perturbations.
View Article and Find Full Text PDFPluripotent stem cells have remarkable self-renewal capacity: the ability to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into almost any cell type in the body. To investigate the interplay between these two aspects of self-renewal, we perform four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSCs and the dissolution of primed pluripotent identity during early differentiation. These screens distinguish genes with distinct roles in pluripotency regulation, including mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control pluripotent identity during early differentiation.
View Article and Find Full Text PDFUnderstanding diverse responses of individual cells to the same perturbation is central to many biological and biomedical problems. Current methods, however, do not precisely quantify the strength of perturbation responses and, more importantly, reveal new biological insights from heterogeneity in responses. Here we introduce the perturbation-response score (PS), based on constrained quadratic optimization, to quantify diverse perturbation responses at a single-cell level.
View Article and Find Full Text PDFComprehensive enhancer discovery is challenging because most enhancers, especially those contributing to complex diseases, have weak effects on gene expression. Our gene regulatory network modeling identified that nonlinear enhancer gene regulation during cell state transitions can be leveraged to improve the sensitivity of enhancer discovery. Using human embryonic stem cell definitive endoderm differentiation as a dynamic transition system, we conducted a mid-transition CRISPRi-based enhancer screen.
View Article and Find Full Text PDFPluripotent stem cells are defined by their self-renewal capacity, which is the ability of the stem cells to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into any somatic cell lineage. However, understanding the mechanisms that control stem cell fitness versus the pluripotent cell identity is challenging. To investigate the interplay between these two aspects of pluripotency, we performed four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSC self-renewal conditions, and the dissolution of the primed pluripotency identity during early differentiation.
View Article and Find Full Text PDFComprehensive enhancer discovery is challenging because most enhancers, especially those affected in complex diseases, have weak effects on gene expression. Our network modeling revealed that nonlinear enhancer-gene regulation during cell state transitions can be leveraged to improve the sensitivity of enhancer discovery. Utilizing hESC definitive endoderm differentiation as a dynamic transition system, we conducted a mid-transition CRISPRi-based enhancer screen.
View Article and Find Full Text PDFDNA methylation is essential to mammalian development, and dysregulation can cause serious pathological conditions. Key enzymes responsible for deposition and removal of DNA methylation are known, but how they cooperate to regulate the methylation landscape remains a central question. Using a knockin DNA methylation reporter, we performed a genome-wide CRISPR-Cas9 screen in human embryonic stem cells to discover DNA methylation regulators.
View Article and Find Full Text PDFMost rapidly proliferating mammalian cells rely on the oxidation of exogenous glutamine to support cell proliferation. We previously found that culture of mouse embryonic stem cells (ESCs) in the presence of inhibitors against MEK and GSK3β to maintain pluripotency reduces cellular reliance on glutamine for tricarboxylic acid (TCA) cycle anaplerosis, enabling ESCs to proliferate in the absence of exogenous glutamine. Here we show that reduced dependence on exogenous glutamine is a generalizable feature of pluripotent stem cells.
View Article and Find Full Text PDFWiley Interdiscip Rev Syst Biol Med
January 2020
Pluripotent stem cells have the ability to unlimitedly self-renew and differentiate to any somatic cell lineage. A number of systems biology approaches have been used to define this pluripotent state. Complementary to systems level characterization, genetic screens offer a unique avenue to functionally interrogate the pluripotent state and identify the key players in pluripotency acquisition and maintenance, exit of pluripotency, and lineage differentiation.
View Article and Find Full Text PDFHuman embryonic stem cells (ESCs) and human induced pluripotent stem cells hold great promise for cell-based therapies and drug discovery. However, homogeneous differentiation remains a major challenge, highlighting the need for understanding developmental mechanisms. We performed genome-scale CRISPR screens to uncover regulators of definitive endoderm (DE) differentiation, which unexpectedly uncovered five Jun N-terminal kinase (JNK)-JUN family genes as key barriers of DE differentiation.
View Article and Find Full Text PDFDirected differentiation of human pluripotent stem cells (hPSCs) into somatic counterparts is a valuable tool for studying disease. However, examination of developmental mechanisms in hPSCs remains challenging given complex multi-factorial actions at different stages. Here, we used TALEN and CRISPR/Cas-mediated gene editing and hPSC-directed differentiation for a systematic analysis of the roles of eight pancreatic transcription factors (PDX1, RFX6, PTF1A, GLIS3, MNX1, NGN3, HES1, and ARX).
View Article and Find Full Text PDFWe previously demonstrated that sphingosine kinase 1 (Sphk1) expression and activity are up-regulated by exogenous palmitate (PAL) in a skeletal muscle model system and in diet-induced obesity in mice; however, potential functions and in vivo relevance of this have not been addressed. Here, we aimed to determine the mechanism by which PAL regulates SphK1 in muscle, and to determine potential roles for its product, sphingosine-1-phosphate (S1P), in muscle biology in the context of obesity. Cloning and analysis of the mouse Sphk1 promoter revealed a peroxisome proliferator-activated receptor (PPAR) α cis-element that mediated activation of a reporter under control of the Sphk1 promoter; direct interaction of PPARα was demonstrated by chromatin immunoprecipitation.
View Article and Find Full Text PDF