Publications by authors named "Besier T"

This study explores the role of task constraints over muscle synergies expression in the context of upper limb motor impairment after stroke. We recruited nine chronic stroke survivors with upper limb impairments and fifteen healthy controls, who performed a series of tasks designed to evoke muscle synergies through various spatial explorations. These tasks included an isometric force task, a dynamic reaching task, the clinical Fugl-Meyer (FM) assessment, and a pinch task.

View Article and Find Full Text PDF

This study investigates the effect of different normalisation methods on muscle synergy extraction from EMG data collected while walking in typically developing young people. Six methods were evaluated: Raw, Within-Trial Maximum, Inter-Trial Maximum, Task-Specific Maximum, Magnitude Percentile, and Unit Variance. Eighteen healthy children aged 8-15 participated, performing walking trials while their EMG signals were recorded and processed.

View Article and Find Full Text PDF

Morphology and cortical thickness of tibia bone influence the strength and strain distribution of bone and also influence fatigue fracture risk. However, current studies have not extensively explored the effect of morphology and cortical thickness on tibial strain distribution during different activities. This study aims to assess the effect of tibial morphology and cortical thickness on tibial strain during six different sports movements.

View Article and Find Full Text PDF

Introduction: We compared the 12-months effects of arthroscopic surgery and physiotherapist-led care for femoroacetabular impingement (FAI) syndrome on the time-varying magnitude of hip contact force and muscle contributions to hip contact force during walking.

Methods: Secondary analysis was performed on thirty-seven individuals with FAI syndrome who received biomechanical assessment before and 12-months following either arthroscopic surgery (n = 17) or physiotherapist-led care (Personalised Hip Therapy, PHT) (n = 20). At both time points, three-dimensional whole-body motions, ground reaction forces, and surface electromyograms (n = 14) were acquired during overground walking.

View Article and Find Full Text PDF
Article Synopsis
  • Skeletal muscles are vital for movement, and understanding how to estimate the forces they produce is essential in fields like biomechanics, robotics, and rehabilitation.
  • Direct measurement of muscle force in humans is invasive, so non-invasive methods like electromyography (EMG) are used for estimation, and a matrix developed by CEDE provides guidelines on EMG applications.
  • The matrix suggests EMG methods for identifying muscle force during isometric and dynamic contractions, while emphasizing the importance of considering various factors to improve accuracy in estimating muscle forces, fostering interdisciplinary discussions to enhance muscle modeling techniques.
View Article and Find Full Text PDF

Creating musculoskeletal models in a paediatric population currently involves either creating an image-based model from medical imaging data or a generic model using linear scaling. Image-based models provide a high level of accuracy but are time-consuming and costly to implement, on the other hand, linear scaling of an adult template musculoskeletal model is faster and common practice, but the output errors are significantly higher. An articulated shape model incorporates pose and shape to predict geometry for use in musculoskeletal models based on existing information from a population to provide both a fast and accurate method.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) is a popular method used to investigate brain function. Stimulation over the motor cortex evokes muscle contractions known as motor evoked potentials (MEPs) and also high-frequency volleys of electrical activity measured in the cervical spinal cord. The physiological mechanisms of these experimentally derived responses remain unclear, but it is thought that the connections between circuits of excitatory and inhibitory neurons play a vital role.

View Article and Find Full Text PDF

The diversity in electromyography (EMG) techniques and their reporting present significant challenges across multiple disciplines in research and clinical practice, where EMG is commonly used. To address these challenges and augment the reproducibility and interpretation of studies using EMG, the Consensus for Experimental Design in Electromyography (CEDE) project has developed a checklist (CEDE-Check) to assist researchers to thoroughly report their EMG methodologies. Development involved a multi-stage Delphi process with seventeen EMG experts from various disciplines.

View Article and Find Full Text PDF

In 3D freehand ultrasound imaging, operator dependent variations in applied forces and movements can lead to errors in the reconstructed images. In this paper, we introduce an automated 3D ultrasound system, which enables acquisitions with controlled movement trajectories by using motors, which electrically move the probe. Due to integrated encoders there is no need of position sensors.

View Article and Find Full Text PDF

Monitoring spontaneous General Movements (GM) of infants 6-20 weeks post-term age is a reliable tool to assess the quality of neurodevelopment in early infancy. Abnormal or absent GMs are reliable prognostic indicators of whether an infant is at risk of developing neurological impairments and disorders such as cerebral palsy (CP). Therapeutic interventions are most effective at improving neuromuscular outcomes if administered in early infancy.

View Article and Find Full Text PDF

Abnormal patterns in infants' General Movements (GMs) are robust clinical indicators for the progression of neurodevelopmental disorders, including cerebral palsy. Availability of automated platforms for General Movements Assessments (GMA) could improve screening rate and allow identifying at-risk infants. While we have previously shown that deep-learning schemes can accurately track the longitudinal axes of infant limb movements (12 anatomical locations, 3 per limb), information about the distal limb segments' rotational movements is important for making an accurate clinical assessment, but has not previously been captured.

View Article and Find Full Text PDF

When reconstructing bone geometry to calculate joint kinematics, shape-model scaling can be more accurate and repeatable than linear scaling given the same anatomical landmarks. This study perturbed anatomical landmarks from optical motion capture and determined the robustness of shape-model scaling to misplaced markers compared to a traditional approach of linear scaling. We hypothesised that shape-model scaling would be less susceptible to variance in marker positions compared to linear scaling.

View Article and Find Full Text PDF

Model reproducibility is a point of emphasis for the National Institutes of Health (NIH) and in science, broadly. As the use of computational modeling in biomechanics and orthopedics grows, so does the need to assess the reproducibility of modeling workflows and simulation predictions. The long-term goal of the KneeHub project is to understand the influence of potentially subjective decisions, thus the modeler's "art", on the reproducibility and predictive uncertainty of computational knee joint models.

View Article and Find Full Text PDF

To elucidate the underlying physiological mechanisms of muscle synergies, we investigated long-range functional connectivity by cortico-muscular (CMC), intermuscular (IMC) and cortico-synergy (CSC) coherence. Fourteen healthy participants executed an isometric upper limb task in synergy-tuned directions. Cortical activity was recorded using 32-channel electroencephalography (EEG) and muscle activity using 16-channel electromyography (EMG).

View Article and Find Full Text PDF

In this narrative review, we explore developments in the field of computational musculoskeletal model personalization using the Physiome and Musculoskeletal Atlas Projects. Model geometry personalization; statistical shape modeling; and its impact on segmentation, classification, and model creation are explored. Examples include the trapeziometacarpal and tibiofemoral joints, Achilles tendon, gastrocnemius muscle, and pediatric lower limb bones.

View Article and Find Full Text PDF

The purpose of this study was to develop a machine learning model to reconstruct time series kinematic and kinetic profiles of the ankle and knee joint across six different tasks using an ankle-mounted IMU. Four male collegiate basketball players performed repeated tasks, including walking, jogging, running, sidestep cutting, max-height jumping, and stop-jumping, resulting in a total of 102 movements. Ankle and knee flexion-extension angles and moments were estimated using motion capture and inverse dynamics and considered 'actual data' for the purpose of model fitting.

View Article and Find Full Text PDF

Torsional, angular, and linear measurements in a paediatric population are clinically important but not well defined and understood. Different methods of measurement and discrepancies between assessors leads to a lack of understanding of what should be defined as typical or atypical for the growing skeleton. From a large dataset of 333 paediatric CT scans, we extracted three-dimensional torsional, angular, and linear measurements from the pelvis, femur, and tibia/fibula.

View Article and Find Full Text PDF

Stakeholders in the modeling and simulation (M&S) community organized a workshop at the 2019 Annual Meeting of the Orthopaedic Research Society (ORS) entitled "Reproducibility in Modeling and Simulation of the Knee: Academic, Industry, and Regulatory Perspectives." The goal was to discuss efforts among these stakeholders to address irreproducibility in M&S focusing on the knee joint. An academic representative from a leading orthopedic hospital in the United States described a multi-institutional, open effort funded by the National Institutes of Health to assess model reproducibility in computational knee biomechanics.

View Article and Find Full Text PDF

Computational models of the neuromusculoskeletal system provide a deterministic approach to investigate input-output relationships in the human motor system. Neuromusculoskeletal models are typically used to estimate muscle activations and forces that are consistent with observed motion under healthy and pathological conditions. However, many movement pathologies originate in the brain, including stroke, cerebral palsy, and Parkinson's disease, while most neuromusculoskeletal models deal exclusively with the peripheral nervous system and do not incorporate models of the motor cortex, cerebellum, or spinal cord.

View Article and Find Full Text PDF

Our study methodology is motivated from three disparate needs: one, imaging studies have existed in silo and study organs but not across organ systems; two, there are gaps in our understanding of paediatric structure and function; three, lack of representative data in New Zealand. Our research aims to address these issues in part, through the combination of magnetic resonance imaging, advanced image processing algorithms and computational modelling. Our study demonstrated the need to take an organ-system approach and scan multiple organs on the same child.

View Article and Find Full Text PDF

Accurate estimation of the hip joint centre (HJC) location is critical for modelling the kinematics and kinetics of the lower limb. Regression equations are commonly used to predict the HJC from anatomical landmarks on the pelvis, such as those published by Tylkowski et al., Andriacchi et al.

View Article and Find Full Text PDF

The analysis of single motor unit (SMU) activity provides the foundation from which information about the neural strategies underlying the control of muscle force can be identified, due to the one-to-one association between the action potentials generated by an alpha motor neuron and those received by the innervated muscle fibers. Such a powerful assessment has been conventionally performed with invasive electrodes (i.e.

View Article and Find Full Text PDF

Determination of the hip joint centre (HJC) is important to accurately estimate hip joint motion, moments and muscle forces. The most accurate method for HJC estimation without medical imaging is an area of interest in the biomechanics community, especially in a paediatric population, which has not been widely evaluated. HJC locations were calculated by sphere-fitting to the acetabulum of three-dimensional pelvises segmented from 333 CT scans of children aged 4 to 18 years old.

View Article and Find Full Text PDF

Background And Objective: Wearable inertial devices integrated with modelling and cloud computing have been widely adopted in the sports sector, however, their use in the health and medical field has yet to be fully realised. To date, there have been no reported studies concerning the use of wearables as a surrogate tool to monitor knee joint loading during recovery following a total knee joint replacement. The objective of this study is to firstly evaluate if peak tibial acceleration from wearables during gait is a good surrogate metric for computer modelling predicted functional knee loading; and secondly evaluate if traditional clinical patient related outcomes measures are consistent with wearable predictions.

View Article and Find Full Text PDF

The functional relationship between bone and cartilage is modulated by mechanical factors. Scarce data exist on the relationship between bone shape and the spatial distribution of cartilage thickness. The aim of the study was to characterise the coupled variation in knee bone morphology and cartilage thickness distributions in knees with healthy cartilage and investigate this relationship as a function of sex, height, body mass, and age.

View Article and Find Full Text PDF