Publications by authors named "Bertyl Andri"

Retention mechanisms involved in supercritical fluid chromatography (SFC) are influenced by interdependent parameters (temperature, pressure, chemistry of the mobile phase, and nature of the stationary phase), a complexity which makes the selection of a proper stationary phase for a given separation a challenging step. For the first time in SFC studies, Parallel Factor Analysis (PARAFAC) was employed to evaluate the chromatographic behavior of eight different stationary phases in a wide range of chromatographic conditions (temperature, pressure, and gradient elution composition). Design of Experiment was used to optimize experiments involving 14 pharmaceutical compounds present in biological and/or environmental samples and with dissimilar physicochemical properties.

View Article and Find Full Text PDF

This work presents a first attempt to establish a model of the retention behaviour for pharmaceutical compounds in gradient mode SFC. For this purpose, multivariate statistics were applied on the basis of data gathered with the Design of Experiment (DoE) methodology. It permitted to build optimally the experiments needed, and served as a basis for providing relevant physicochemical interpretation of the effects observed.

View Article and Find Full Text PDF

In the last years, supercritical fluid chromatography has largely been acknowledged as a singular and performing technique in the field of separation sciences. Recent studies highlighted the interest of SFC for the quality control of pharmaceuticals, especially in the case of the determination of the active pharmaceutical ingredient (API). Nevertheless, quality control requires also the determination of impurities.

View Article and Find Full Text PDF

The concept of Quality by Design (QbD) is now well established in pharmaceutical industry and should be applied to the development of any analytical methods. In this context, the key concept of Design Space (DS) was introduced in the field of analytical method optimization. In chromatographic words, the DS is the space of chromatographic conditions that will ensure the quality of peaks separation, thus DS is a zone of robustness.

View Article and Find Full Text PDF