Publications by authors named "Bertus van Heerden"

We present Full SMS, a multipurpose graphical user interface (GUI)-based software package for analyzing single-molecule spectroscopy (SMS) data. SMS typically delivers multiparameter data-such as fluorescence brightness, lifetime, and spectra-of molecular- or nanometer-scale particles such as single dye molecules, quantum dots, or fluorescently labeled biological macromolecules. Full SMS allows an unbiased statistical analysis of fluorescence brightness through level resolution and clustering, analysis of fluorescence lifetimes through decay fitting, as well as the calculation of second-order correlation functions and the display of fluorescence spectra and raster-scan images.

View Article and Find Full Text PDF

Phycobilisomes (PBs) play an important role in cyanobacterial photosynthesis. They capture light and transfer excitation energy to the photosynthetic reaction centres. PBs are also central to some photoprotective and photoregulatory mechanisms that help sustain photosynthesis under non-optimal conditions.

View Article and Find Full Text PDF

Real-time feedback-driven single-particle tracking is a technique that uses feedback control to enable single-molecule spectroscopy of freely diffusing particles in native or near-native environments. A number of different real-time feedback-driven single-particle tracking (RT-FD-SPT) approaches exist, and comparisons between methods based on experimental results are of limited use due to differences in samples and setups. In this study, we used statistical calculations and dynamical simulations to directly compare the performance of different methods.

View Article and Find Full Text PDF

Real-time feedback-driven single-particle tracking (RT-FD-SPT) is a class of techniques in the field of single-particle tracking that uses feedback control to keep a particle of interest in a detection volume. These methods provide high spatiotemporal resolution on particle dynamics and allow for concurrent spectroscopic measurements. This review article begins with a survey of existing techniques and of applications where RT-FD-SPT has played an important role.

View Article and Find Full Text PDF

Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced when coupled to a gold nanorod (AuNR). The AuNRs utilized in this study were prepared via chemical reactions, and the hybrid system was constructed using a simple and economical spin-assisted layer-by-layer technique.

View Article and Find Full Text PDF