Publications by authors named "Bertsche W"

Einstein's general theory of relativity from 1915 remains the most successful description of gravitation. From the 1919 solar eclipse to the observation of gravitational waves, the theory has passed many crucial experimental tests. However, the evolving concepts of dark matter and dark energy illustrate that there is much to be learned about the gravitating content of the universe.

View Article and Find Full Text PDF

The positron, the antiparticle of the electron, predicted by Dirac in 1931 and discovered by Anderson in 1933, plays a key role in many scientific and everyday endeavours. Notably, the positron is a constituent of antihydrogen, the only long-lived neutral antimatter bound state that can currently be synthesized at low energy, presenting a prominent system for testing fundamental symmetries with high precision. Here, we report on the use of laser cooled Be ions to sympathetically cool a large and dense plasma of positrons to directly measured temperatures below 7 K in a Penning trap for antihydrogen synthesis.

View Article and Find Full Text PDF

The photon-the quantum excitation of the electromagnetic field-is massless but carries momentum. A photon can therefore exert a force on an object upon collision. Slowing the translational motion of atoms and ions by application of such a force, known as laser cooling, was first demonstrated 40 years ago.

View Article and Find Full Text PDF

In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum. The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Since then, studies involving the Lyman-α line-the 1S-2P transition at a wavelength of 121.

View Article and Find Full Text PDF

In 1928, Dirac published an equation that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles-antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang.

View Article and Find Full Text PDF

The ALPHA experiment has recently entered an expansion phase of its experimental programme, driven in part by the expected benefits of conducting experiments in the framework of the new AD + ELENA antiproton facility at CERN. With antihydrogen trapping now a routine operation in the ALPHA experiment, the collaboration is leading progress towards precision atomic measurements on trapped antihydrogen atoms, with the first excitation of the 1S-2S transition and the first measurement of the antihydrogen hyperfine spectrum (Ahmadi 2017 , 506-510 (doi:10.1038/nature21040); , 66-69 (doi:10.

View Article and Find Full Text PDF

The simultaneous control of the density and particle number of non-neutral plasmas confined in Penning-Malmberg traps is demonstrated. Control is achieved by setting the plasma's density by applying a rotating electric field while simultaneously fixing its axial potential via evaporative cooling. This novel method is particularly useful for stabilizing positron plasmas, as the procedures used to collect positrons from radioactive sources typically yield plasmas with variable densities and particle numbers; it also simplifies optimization studies that require plasma parameter scans.

View Article and Find Full Text PDF

Antihydrogen, a positron bound to an antiproton, is the simplest anti-atom. Its structure and properties are expected to mirror those of the hydrogen atom. Prospects for precision comparisons of the two, as tests of fundamental symmetries, are driving a vibrant programme of research.

View Article and Find Full Text PDF

The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 10 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger's relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector.

View Article and Find Full Text PDF

The spectrum of the hydrogen atom has played a central part in fundamental physics over the past 200 years. Historical examples of its importance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman and others, the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S-2S transition by Hänsch to a precision of a few parts in 10. Recent technological advances have allowed us to focus on antihydrogen-the antimatter equivalent of hydrogen.

View Article and Find Full Text PDF

Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter.

View Article and Find Full Text PDF

The properties of antihydrogen are expected to be identical to those of hydrogen, and any differences would constitute a profound challenge to the fundamental theories of physics. The most commonly discussed antiatom-based tests of these theories are searches for antihydrogen-hydrogen spectral differences (tests of CPT (charge-parity-time) invariance) or gravitational differences (tests of the weak equivalence principle). Here we, the ALPHA Collaboration, report a different and somewhat unusual test of CPT and of quantum anomaly cancellation.

View Article and Find Full Text PDF

Knowledge of the residual gas composition in the ALPHA experiment apparatus is important in our studies of antihydrogen and nonneutral plasmas. A technique based on autoresonant ion extraction from an electrostatic potential well has been developed that enables the study of the vacuum in our trap. Computer simulations allow an interpretation of our measurements and provide the residual gas composition under operating conditions typical of those used in experiments to produce, trap, and study antihydrogen.

View Article and Find Full Text PDF

Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap.

View Article and Find Full Text PDF

The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory.

View Article and Find Full Text PDF

Charges in cold, multiple-species, non-neutral plasmas separate radially by mass, forming centrifugally separated states. Here, we report the first detailed measurements of such states in an electron-antiproton plasma, and the first observations of the separation dynamics in any centrifugally separated system. While the observed equilibrium states are expected and in agreement with theory, the equilibration time is approximately constant over a wide range of parameters, a surprising and as yet unexplained result.

View Article and Find Full Text PDF

We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited.

View Article and Find Full Text PDF

Antimatter was first predicted in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced at low energies at CERN (the European Organization for Nuclear Research) since 2002.

View Article and Find Full Text PDF

We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9 K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments.

View Article and Find Full Text PDF

A microchannel plate (MCP)/phosphor screen assembly has been used to destructively measure the radial profile of cold, confined antiprotons, electrons, and positrons in the ALPHA experiment, with the goal of using these trapped particles for antihydrogen creation and confinement. The response of the MCP to low energy (10-200 eV, <1 eV spread) antiproton extractions is compared to that of electrons and positrons.

View Article and Find Full Text PDF

Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

View Article and Find Full Text PDF

We have demonstrated storage of plasmas of the charged constituents of the antihydrogen atom, antiprotons and positrons, in a Penning trap surrounded by a minimum-B magnetic trap designed for holding neutral antiatoms. The neutral trap comprises a superconducting octupole and two superconducting, solenoidal mirror coils. We have measured the storage lifetimes of antiproton and positron plasmas in the combined Penning-neutral trap, and compared these to lifetimes without the neutral trap fields.

View Article and Find Full Text PDF

Measurements on electrons confined in a Penning trap show that extreme quadrupole fields destroy particle confinement. Much of the particle loss comes from the hitherto unrecognized ballistic transport of particles directly into the wall. The measurements scale to the parameter regime used by ATHENA and ATRAP to create antihydrogen, and suggest that quadrupoles cannot be used to trap antihydrogen.

View Article and Find Full Text PDF

For the first time, high amplitude (Deltan/n approximately 40%), high Q (up to 100 000) Bernstein, Greene, and Kruskal modes have been controllably excited in a plasma. The modes are created by sweeping an excitation voltage downwards in frequency, thereby dragging a phase space "bucket" of low density into the bulk of the plasma velocity distribution. The modes have no linear limit and differ markedly from plasma waves and Trivelpiece-Gould modes.

View Article and Find Full Text PDF