Background: Moment arms are an indicator of the role of the muscles in joint actuation. An excursion method is often used to calculate them, even though it provides 1D results. As shoulder movement occurs in three dimensions (combination of flexion, abduction and axial rotation), moment arms should be given in 3D.
View Article and Find Full Text PDFPurpose: To compare the mechanical properties of aneurysm content after endoleak embolization with a chitosan hydrogel (CH) with that with a chitosan hydrogel with sodium tetradecyl sulfate (CH-STS) using strain ultrasound elastography (SUE).
Materials And Methods: Bilateral common iliac artery type Ia endoleaks were created in 9 dogs. Per animal, 1 endoleak was randomized to blinded embolization with CH, and the other, with CH-STS.
Purpose: The techniques used previously to assess intracapsular pressures did not allow the assessment of pressure variations in both compartments throughout the entire range of motion without puncturing the capsular tissue. Our hypothesis was that the intra-capsular pressure would be different in the lateral and acetabular compartment depending on the movement assessed.
Methods: Eight hip joints from four cadaveric specimens (78.
Background Flexion-Abduction-External-Rotation and Flexion-Adduction-Internal-Rotation tests are used to reproduce pain at the hip during clinical assessment. As pain can be elicited by high intracapsular pressure, no information has been provided regarding intracapsular pressure during these pain provocative tests. Methods Eight hip joints from four cadaveric specimens (78.
View Article and Find Full Text PDFSonoelastography is a relatively new non-invasive imaging tool to assess the qualitative and quantitative biomechanical properties of various tissues. Two types of sonoelastography (SE) are commonly explored: strain and shear wave. Sonoelastography can be used in multiple medical subspecialties to assess pathological tissular changes by obtaining mechanical properties, shear wave speed, and strain ratio data.
View Article and Find Full Text PDFJ Back Musculoskelet Rehabil
November 2021
Background: There is no non-invasive in vivo method to assess intervertebral kinematics. Current kinematics models are based on in vitro bone reconstructions from computed tomography (CT)-scan imaging, fluoroscopy and MRIs, which are either expensive or deleterious for human tissues. Musculoskeletal ultrasound is an accessible, easy to use and cost-effective device that allows high-resolution, real-time imaging of bone structure.
View Article and Find Full Text PDFPurpose: To investigate the feasibility of shear wave sonoelastography (SWS) for endoleak detection and thrombus characterization of abdominal aortic aneurysm (AAA) after endovascular repair (EVAR).
Materials And Methods: Participants who underwent EVAR were prospectively recruited between November 2014 and March 2016 and followed until March 2019. Elasticity maps of AAA were computed using SWS and compared to computed tomography angiography (CTA) and color Doppler ultrasound (CDUS).
Background: Post-stroke spasticity contributes to impairments, disabilities and decline in quality of life. Quantitative measurements of spasticity are needed in order to assess the impact of specific treatments and to choose the more accurate technique for each patient. The aim of this review is to examine the use of shear wave ultrasound elastography as a quantitative tool for monitoring biomechanical muscle properties such as stiffness and to determine whether it is a reliable method to assess spastic muscle in stroke survivors.
View Article and Find Full Text PDFPurpose: The purpose of this study was to investigate changes in the mechanical properties of capsular tissue using shear wave elastography (SWE) and a durometer under various tensile loads, and to explore the reliability and correlation of SWE and durometer measurements to evaluate whether SWE technology could be used to assess tissue changes during capsule tensile loading.
Methods: The inferior glenohumeral joint capsule was harvested from 10 fresh human cadaveric specimens. Tensile loading was applied to the capsular tissue using 1-, 3-, 5-, and 8-kg weights.
Background: To evaluate residual endoleak and thrombus organisation with shear wave imaging (SWI) after endoleak embolisation through an animal study.
Methods: This prospective experimental study involved eight dogs with creation of 16 iliac aneurysms and type I endoleak after endovascular aneurysm repair (EVAR). Embolisation agents were injected into the sac to seal endoleak.
Purpose: To compare the efficacy of an embolization agent with sclerosing properties (made of chitosan and sodium tetradecyl sulfate, CH-STS) with a similar embolization agent but without sclerosing properties (made of chitosan, CH) in treating endoleaks in a canine endovascular aneurysm repair model.
Methods: Two chitosan-based radiopaque hydrogels were prepared, one with STS and one without STS. Their rheological, injectability, and embolizing properties were assessed in vitro; afterwards, their efficacy in occluding endoleaks was compared in a canine bilateral aneurysm model reproducing type I endoleaks (n = 9 each).
Objectives: To investigate if shear wave imaging (SWI) can detect endoleaks and characterize thrombus organization in abdominal aortic aneurysms (AAAs) after endovascular aneurysm repair.
Methods: Stent grafts (SGs) were implanted in 18 dogs after surgical creation of type I endoleaks (four AAAs), type II endoleaks (13 AAAs) and no endoleaks (one AAA). Color flow Doppler ultrasonography (DUS) and SWI were performed before SG implantation (baseline), on days 7, 30 and 90 after SG implantation, and on the day of the sacrifice (day 180).
Purpose: To evaluate the potential of a bioactive coating based on chondroitin sulfate (CS) and tethered epidermal growth factor (EGF) for improvement of healing around stent grafts (SGs).
Materials And Methods: The impact of the bioactive coating on cell survival was tested in vitro on human vascular cells using polyethylene terephthalate films (PET) as a substrate. After being transferred onto a more "realistic" material (expanded polytetrafluoroethylene [ePTFE]), the durability and mechanical behavior of the coating and cell survival were studied.
Purpose: To assess the ability of noninvasive vascular elastography (NIVE) to help characterize endoleaks and thrombus organization in a canine model of abdominal aortic aneurysm after endovascular aneurysm repair with stent-grafts, in comparison with computed tomography (CT) and pathologic examination findings.
Materials And Methods: All protocols were approved by the Animal Care Committee in accordance with the guidelines of the Canadian Council of Animal Care. Stent-grafts were implanted in a group of 18 dogs with aneurysms created in the abdominal aorta.
Herpes simplex virus 1 (HSV-1) is a neurotropic virus that causes skin lesions and goes on to enter a latent state in neurons of the trigeminal ganglia. Following stress, the virus may reactivate from latency leading to recurrent lesions. The in situ study of neuronal infections by HSV-1 is critical to understanding the mechanisms involved in the biology of this virus and how it causes disease; however, this normally requires fixation and sectioning of the target tissues followed by treatment with contrast agents to visualize key structures, which can lead to artifacts.
View Article and Find Full Text PDFWe report that combining interferometry with Second Harmonic Generation (SHG) microscopy provides valuable information about the relative orientation of noncentrosymmetric structures composing tissues. This is confirmed through the imaging of rat medial gastrocnemius muscle. The inteferometric Second Harmonic Generation (ISHG) images reveal that each side of the myosin filaments composing the A band of the sarcomere generates π phase shifted SHG signal which implies that the myosin proteins at each end of the filaments are oriented in opposite directions.
View Article and Find Full Text PDFWe report the imaging of tendon with Interferometric Second Harmonic Generation microscopy. We observe that the noncentrosymmetric structural organization can be maintained along the fibrillar axis over more than 150 μm, while in the transverse direction it is ∼1-15 μm. Those results are explained by modeling tendon as a heterogeneous distribution of noncentrosymmetric nano-cylinders (collagen fibrils) oriented along the fibrillar axis.
View Article and Find Full Text PDFFascia tissue is rich in collagen type I proteins and can be imaged by second harmonic generation (SHG) microscopy. While identifying the overall alignment of the collagen fibrils is evident from those images, the tridimensional structural origin for the observation of SHG signal is more complex than it apparently seems. Those images reveal that the noncentrosymmetric (piezoelectric) structures are distributed heterogeneously on spatial dimensions inferior to the resolution provided by the nonlinear optical microscope (sub-micron).
View Article and Find Full Text PDF