The Matter-wave laser Interferometric Gravitation Antenna (MIGA) is an underground instrument using cold-atom interferometry to perform precision measurements of gravity gradients and strains. Following its installation at the low noise underground laboratory LSBB in the South-East of France, it will serve as a prototype for gravitational wave detectors with a horizontal baseline of 150 meters. Three spatially separated cold-atom interferometers will be driven by two common counter-propagating lasers to perform a measurement of the gravity gradient along this baseline.
View Article and Find Full Text PDFThe increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.
View Article and Find Full Text PDF