Publications by authors named "Bertrand Tremolet de Villers"

During Li-ion battery operation, (electro)chemical side reactions occur within the cell that can promote or degrade performance. These complex reactions produce byproducts in the solid, liquid, and gas phases. Studying byproducts in these three phases can help optimize battery lifetimes.

View Article and Find Full Text PDF

Acetogenic bacteria represent a class of organisms capable of converting reducing equivalents and carbon dioxide into products with carbon-carbon bonds. Materials-based bio-electrochemical approaches are attractive for supplying biological organisms directly with grid-supplied electrons to convert carbon dioxide to value-added chemicals. Carbon nanotube-modified biocathodes have emerged as promising candidates for microbial electrosynthesis with high yields of carbon product formation, but a fundamental understanding of extracellular charge transfer at this electrode-biofilm interface is still lacking.

View Article and Find Full Text PDF
Article Synopsis
  • The presence of trace amounts of water in silicon-based lithium-ion batteries negatively impacts the electrochemical performance by affecting the formation and properties of the solid electrolyte interphase (SEI).
  • The study analyzes the SEI created in a specific electrolyte condition both with and without added water, investigating how changes in water concentration and potential levels influence the SEI's characteristics through various microscopy and spectroscopy methods.
  • Findings reveal that additional water leads to undesirable reactions, resulting in an insulating SEI enriched with fluorophosphate and a compromised Si electrode surface, which ultimately hinders battery efficiency.
View Article and Find Full Text PDF

Layered P2-type Na Mn Fe O cathode material is a promising candidate for next-generation sodium-ion batteries due to the economical and environmentally benign characteristics of Mn and Fe. The poor cycling stability of the material, however, is still a problem that must be solved. To address the problem, electrochemically inactive Mg was introduced into the structure by substituting some of the Fe ions.

View Article and Find Full Text PDF

We present a novel spectroscopic technique for in situ Raman microscopy studies of battery electrodes. By creating nanostructures on a copper mesh current collector, we were able to utilize surface-enhanced Raman spectroscopy (SERS) to monitor the evolution of the silicon anode-electrolyte interphase. The spectra show reversible Si peak intensity changes upon lithiation and delithiation.

View Article and Find Full Text PDF

A high-yielding synthesis of a series of polyimide dendrimers, including decacyclene- and perylene-containing dendrimer D6, in which two types of polyimide dyes are present, is reported. In these constructs, the branching unit is represented by trisphenylamine, and the solubilizing chains by N-9-heptadecanyl-substituted perylene diimides. The photophysical properties of the dendrimers have been studied by absorption, steady-state, and time-resolved emission spectroscopy and pump-probe transient absorption spectroscopy.

View Article and Find Full Text PDF

We examine the ultrafast dynamics of exciton migration and polaron production in sequentially processed 'quasi-bilayer' and preblended 'bulk heterojunction' (BHJ) solar cells based on conjugated polymer films that contain the same total amount of fullerene. We find that even though the polaron yields are similar, the dynamics of polaron production are significantly slower in quasi-bilayers than BHJs. We argue that the different polaron production dynamics result from the fact that (1) there is significantly less fullerene inside the polymer in quasi-bilayers than in BHJs and (2) sequential processing yields polymer layers that are significantly more ordered than BHJs.

View Article and Find Full Text PDF