Coalescence is a complex phenomenon leading to the merging of deformable particles of fluid. The complexity stems largely from the simultaneous occurrence of phenomena of a different nature (hydrodynamic, electrostatic, physicochemical) acting at different scales. The stochastic effects controlling the formation of the liquid bridge between two droplets of the same liquid, immersed in another nonmiscible liquid, are studied through a series of molecular dynamics simulations.
View Article and Find Full Text PDFTiO nanotubes constitute very promising nanomaterials for water decontamination by the removal of cations. We combined a range of experimental techniques from structural analyses to measurements of the properties of aqueous suspensions of nanotubes, with (i) continuous solvent modeling and (ii) quantum DFT-based simulations to assess the adsorption of Cs on TiO nanotubes and to predict the separation of metal ions. The methodology is set to be operable under realistic conditions, which, in this case, include the presence of CO that needs to be treated as a substantial contaminant, both in experiments and in models.
View Article and Find Full Text PDFNonequilibrium molecular dynamics (NEMD) simulations have been performed to describe the flow of a fluid nanolayer confined by another fluid. The results show that the behavior of liquids can still be described by the Navier-Stokes equation at the nanoscale, i.e.
View Article and Find Full Text PDFSecond Harmonic Generation (SHG) today represents one of the most powerful techniques to selectively probe all types of interfaces. However, the origin of the SHG signal at a molecular level is still debated since the local dipole contribution, which is strongly correlated to the molecular orientation can be counterbalanced by non-local quadrupole contributions. Here, we propose a method to simulate the SHG signal of a model water/air interface from the molecular response of each contribution.
View Article and Find Full Text PDFJ Colloid Interface Sci
May 2022
Understanding ionic solutions in single-digit nanoconfinement is crucial to explain the behavioral transition of confined solutions. This is particularly the case when the system length scale crosses the classical key length scales describing energetics and equilibrium of ionic solutions next to surfaces. Experimentally probing nanoconfinement would open large perspectives to test modelling or theory predictions.
View Article and Find Full Text PDFThe interaction between an atomic force microscopy (AFM) probe and a thin film of water deposited over a flat substrate is studied using molecular dynamics (MD). The effects of the film thickness and the probe radius on both the deformation height of the liquid interface and the distance of the jump to contact at which the liquid comes in direct contact with the probe are investigated. The dynamics of the surface deformation and the role of interface fluctuations are studied in detail.
View Article and Find Full Text PDFSodium nonatitanate powder is a layered material containing some potential exchangeable sodium ions between layers. In this work, sorption mechanism of this material has been studied and modeled at the solid-liquid interface. In particular, the ion-exchange mechanism is up to now not entirely known and especially the role of the pH on sorption properties.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2016
Herein, a minimal model for the common case of W/O solubilization of badly soluble compounds present in an excess phase by reverse micellar aggregates in chemical equilibrium with its single compounds is introduced. A simple model of such liquid-liquid extractions is crucial for obtaining predictive parameter for the modelling of nuclear waste management and hydrometallurgic recycling strategies. The standard Gibbs free energy of aggregation and the concentration of the corresponding aggregate is calculated within a multiple-equilibria approach for a set of aggregate compositions of solute and amphiphilic extractant molecules.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2015
Monovalent and divalent aqueous electrolytes confined in negatively charged porous silica are studied by means of molecular simulations including free energy calculations. Owing to the strong cation adsorption at the surface, surface charge overcompensation (overscreening) occurs which leads to an effective positive surface next to the Stern layer, followed by a negatively charged diffuse layer. A simple Poisson-Boltzmann model in which the single-ion potential of mean force is introduced is shown to capture the most prominent features of ion density profiles near an amorphous silica surface.
View Article and Find Full Text PDFWe study the extraction of strontium by sodium nonatitanate powder from nitrate strontium and acetate sodium mixture. Experiments show that adsorption is quantitative. The excess Gibbs free energy has been modeled by various models (ideal, 2D Coulomb, regular solution model) for the solid phase.
View Article and Find Full Text PDFThis article focuses on the possibility of exciting some lanthanides (Ce(3+), Tb(3+), Gd(3+), and Eu(3+)) by ultrasound in aqueous solutions. Depending on the lanthanide ions and on the acoustic cavitation conditions (single-bubble or multibubble systems), the excitation mechanism is shown to be photoexcitation (e.g.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2013
Bubble and peak: The isotope effects in the sonoluminescence spectra of light and heavy water under ultrasound indicate the formation of a non-equilibrium plasma inside the collapsing cavitation bubbles. The picture demonstrates the active cavitation zones in water at 204 kHz.
View Article and Find Full Text PDFThe sonoluminescence (SL) spectra of OH(A(2)Σ(+)) excited state produced during the sonolysis of water sparged with argon were measured and analyzed at various ultrasonic frequencies (20, 204, 362, 609, and 1057 kHz) in order to determine the intrabubble conditions created by multibubble cavitation. The relative populations of the OH(A(2)Σ(+)) v' = 1-4 vibrational states as well as the vibronic temperatures (T(v), T(e)) have been calculated after deconvolution of the SL spectra. The results of this study provide evidence for nonequilibrium plasma formation during sonolysis of water in the presence of argon.
View Article and Find Full Text PDFRealistic models of amorphous silica surfaces with different silanol densities are built using Monte Carlo annealing. Water-silica interfaces are characterized by their energy interaction maps, adsorption isotherms, self-diffusion coefficients, and Poiseuille flows. A hydrophilic to hydrophobic transition appears as the surface becomes purely siliceous.
View Article and Find Full Text PDFIn this work, Pa(V) monocations have been studied in liquid water by means of density functional theory (DFT) based molecular dynamic simulations (CPMD) and compared with their U(VI) isoelectronic counterparts to understand the peculiar chemical behavior of Pa(V) in aqueous solution. Four different Pa(V) monocationic isomers appear to be stable in liquid water from our simulations: [PaO(2)(H(2)O)(5)](+)(aq), [Pa(OH)(4)(H(2)O)(2)](+)(aq), [PaO(OH)(2)(H(2)O)(4)](+)(aq), and [Pa(OH)(4)(H(2)O)(3)](+)(aq). On the other hand, in the case of U(VI) only the uranyl, [UO(2)(H(2)O)(5)](2)(+)(aq), is stable.
View Article and Find Full Text PDFUO(2) (+)-solvent complexes having the general formula [UO(2)(ROH)](+) (R=H, CH(3), C(2)H(5), and n-C(3)H(7)) are formed using electrospray ionization and stored in a Fourier transform ion cyclotron resonance mass spectrometer, where they are isolated by mass-to-charge ratio, and then photofragmented using a free-electron laser scanning through the 10 mum region of the infrared spectrum. Asymmetric O=U=O stretching frequencies (nu(3)) are measured over a very small range [from approximately 953 cm(-1) for H(2)O to approximately 944 cm(-1) for n-propanol (n-PrOH)] for all four complexes, indicating that the nature of the alkyl group does not greatly affect the metal centre. The nu(3) values generally decrease with increasing nucleophilicity of the solvent, except for the methanol (MeOH)-containing complex, which has a measured nu(3) value equal to that of the n-PrOH-containing complex.
View Article and Find Full Text PDFThe Free-Electron Laser for Infrared Experiments (FELIX) was used to study the wavelength-resolved multiple photon photodissociation of discrete, gas-phase uranyl (UO22+) complexes containing a single anionic ligand (A), with or without ligated solvent molecules (S). The uranyl antisymmetric and symmetric stretching frequencies were measured for complexes with general formula [UO2A(S)n]+, where A was hydroxide, methoxide, or acetate; S was water, ammonia, acetone, or acetonitrile; and n = 0-3. The values for the antisymmetric stretching frequency for uranyl ligated with only an anion ([UO2A]+) were as low or lower than measurements for [UO2]2+ ligated with as many as five strong neutral donor ligands and are comparable to solution-phase values.
View Article and Find Full Text PDF