During meiosis, programmed DNA double-strand breaks (DSBs) are formed by the topoisomerase-like enzyme, Spo11, activating the DNA damage response (DDR) kinase Mec1ATR via the checkpoint clamp loader, Rad24RAD17. At single loci, loss of Mec1 and Rad24 activity alters DSB formation and recombination outcome, but their genome-wide roles have not been examined in detail. Here, we utilise two strategies-deletion of the mismatch repair protein, Msh2, and control of meiotic prophase length via regulation of the Ndt80 transcription factor-to help characterise the roles Mec1 and Rad24 play in meiotic recombination by enabling genome-wide mapping of meiotic progeny.
View Article and Find Full Text PDFMeiotic recombination shows broad variations across species and along chromosomes and is often suppressed at and around genomic regions determining sexual compatibility such as mating type loci in fungi. Here, we show that the absence of Spo11-DSBs and meiotic recombination on Lakl0C-left, the chromosome arm containing the sex locus of the budding yeast, results from the absence of recruitment of the two chromosome axis proteins Red1 and Hop1, essential for proper Spo11-DSBs formation. Furthermore, cytological observation of spread pachytene meiotic chromosomes reveals that Lakl0C-left does not undergo synapsis.
View Article and Find Full Text PDFIn most eukaryotes, meiotic crossovers (COs) are limited to 1-3 per chromosome, and are prevented from occurring close to one another by CO interference. The fission yeast , an exception to these general rules, was reported to have the highest CO number per chromosome and no or weak interference. However, global CO frequency was indirectly estimated, calling for confirmation.
View Article and Find Full Text PDFMeiotic recombination is a driving force for genome evolution, deeply characterized in a few model species, notably in the budding yeast Saccharomyces cerevisiae. Interestingly, Zip2, Zip3, Zip4, Spo16, Msh4, and Msh5, members of the so-called ZMM pathway that implements the interfering meiotic crossover pathway in S. cerevisiae, have been lost in Lachancea yeast species after the divergence of Lachancea kluyveri from the rest of the clade.
View Article and Find Full Text PDFBreak-induced replication (BIR) is a highly mutagenic eukaryotic homologous DNA recombination pathway that repairs one-ended DNA double strand breaks such as broken DNA replication forks and eroded telomeres. While searching for cis-acting factors regulating ectopic BIR efficiency, we found that ectopic BIR efficiency is the highest close to chromosome ends. The variations of ectopic BIR efficiency as a function of the length of DNA to replicate can be described as a combination of two decreasing exponential functions, a property in line with repeated cycles of strand invasion, elongation and dissociation that characterize BIR.
View Article and Find Full Text PDFMeiotic recombination is an essential biological process that ensures faithful chromosome segregation and promotes parental allele shuffling. Tetrad analysis is a powerful approach to quantify the genetic makeups and recombination landscapes of meiotic products. Here we present RecombineX (https://github.
View Article and Find Full Text PDFDissecting the genetic basis of complex trait remains a real challenge. The budding yeast Saccharomyces cerevisiae has become a model organism for studying quantitative traits, successfully increasing our knowledge in many aspects. However, the exploration of the genotype-phenotype relationship in non-model yeast species could provide a deeper insight into the genetic basis of complex traits.
View Article and Find Full Text PDFGenetic recombination arises during meiosis through the repair of DNA double-strand breaks (DSBs) that are created by Spo11, a topoisomerase-like protein. Spo11 DSBs form preferentially in nucleosome-depleted regions termed hotspots, yet how Spo11 engages with its DNA substrate to catalyse DNA cleavage is poorly understood. Although most recombination events are initiated by a single Spo11 cut, here we show in Saccharomyces cerevisiae that hyperlocalized, concerted Spo11 DSBs separated by 33 to more than 100 base pairs also form, which we term 'double cuts'.
View Article and Find Full Text PDFMeiotic recombination ensures proper chromosome segregation to form viable gametes and results in gene conversions events between homologs. Conversion tracts are shorter in meiosis than in mitotically dividing cells. This results at least in part from the binding of a complex, containing the Mer3 helicase and the MutLβ heterodimer, to meiotic recombination intermediates.
View Article and Find Full Text PDFThe budding yeast, Saccharomyces cerevisiae, has served as a model for nearly a century to understand the principles of the eukaryotic life cycle. The canonical life cycle of S. cerevisiae comprises a regular alternation between haploid and diploid phases.
View Article and Find Full Text PDFIn chromosome conformation capture experiments (Hi-C), the accuracy with which contacts are detected varies due to the uneven distribution of restriction sites along genomes. In addition, repeated sequences or homologous regions remain indistinguishable because of the ambiguities they introduce during the alignment of the sequencing reads. We addressed both limitations by designing and engineering 144 kb of a yeast chromosome with regularly spaced restriction sites (Syn-HiC design).
View Article and Find Full Text PDFMeiotic recombination is essential for fertility and allelic shuffling. Canonical recombination models fail to capture the observed complexity of meiotic recombinants. Here, by combining genome-wide meiotic heteroduplex DNA patterns with meiotic DNA double-strand break (DSB) sites, we show that part of this complexity results from frequent template switching during synthesis-dependent strand annealing that yields noncrossovers and from branch migration of double Holliday junction (dHJ)-containing intermediates that mainly yield crossovers.
View Article and Find Full Text PDFMeiotic recombination is a major factor of genome evolution, deeply characterized in only a few model species, notably the yeast Saccharomyces cerevisiae. Consequently, little is known about variations of its properties across species. In this respect, we explored the recombination landscape of Lachancea kluyveri, a protoploid yeast species that diverged from the Saccharomyces genus more than 100 million years ago and we found striking differences with S.
View Article and Find Full Text PDFGene conversions resulting from meiotic recombination are critical in shaping genome diversification and evolution. How the extent of gene conversions is regulated is unknown. Here we show that the budding yeast mismatch repair related MutLβ complex, Mlh1-Mlh2, specifically interacts with the conserved meiotic Mer3 helicase, which recruits it to recombination hotspots, independently of mismatch recognition.
View Article and Find Full Text PDFSince more than a decade ago, Saccharomyces cerevisiae has been used as a model to dissect complex traits, revealing the genetic basis of a large number of traits in fine detail. However, to have a more global view of the genetic architecture of traits across species, the examination of the molecular basis of phenotypes within non-conventional species would undoubtedly be valuable. In this respect, the Saccharomycotina yeasts represent ideal and potential non-model organisms.
View Article and Find Full Text PDFReconstructing genome history is complex but necessary to reveal quantitative principles governing genome evolution. Such reconstruction requires recapitulating into a single evolutionary framework the evolution of genome architecture and gene repertoire. Here, we reconstructed the genome history of the genus Lachancea that appeared to cover a continuous evolutionary range from closely related to more diverged yeast species.
View Article and Find Full Text PDFResection of DNA double-strand breaks (DSBs) is a pivotal step during which the choice between NHEJ and HR DNA repair pathways is made. Although CDKs are known to control initiation of resection, their role in regulating long-range resection remains elusive. Here we show that CDKs 1/2 phosphorylate the long-range resection nuclease EXO1 at four C-terminal S/TP sites during S/G2 phases of the cell cycle.
View Article and Find Full Text PDFStructure-specific DNA endonucleases have critical roles during DNA replication, repair and recombination, yet they also have the potential for causing genome instability. Controlling these enzymes may be essential to ensure efficient processing of ad hoc substrates and to prevent random, unscheduled processing of other DNA structures, but it is unknown whether structure-specific endonucleases are regulated in response to DNA damage. Here, we uncover DNA damage-induced activation of Mus81-Eme1 Holliday junction resolvase in fission yeast.
View Article and Find Full Text PDFSeveral homology-dependent pathways can repair potentially lethal DNA double-strand breaks (DSBs). The first step common to all homologous recombination reactions is the 5'-3' degradation of DSB ends that yields the 3' single-stranded DNA required for the loading of checkpoint and recombination proteins. In yeast, the Mre11-Rad50-Xrs2 complex (Xrs2 is known as NBN or NBS1 in humans) and Sae2 (known as RBBP8 or CTIP in humans) initiate end resection, whereas long-range resection depends on the exonuclease Exo1, or the helicase-topoisomerase complex Sgs1-Top3-Rmi1 together with the endonuclease Dna2 (refs 1-6).
View Article and Find Full Text PDFMeiotic DNA double-strand breaks (DSBs) initiate crossover (CO) recombination, which is necessary for accurate chromosome segregation, but DSBs may also repair as non-crossovers (NCOs). Multiple recombination pathways with specific intermediates are expected to lead to COs and NCOs. We revisited the mechanisms of meiotic DSB repair and the regulation of CO formation, by conducting a genome-wide analysis of strand-transfer intermediates associated with recombination events.
View Article and Find Full Text PDFIn this issue of Molecular Cell, Mazloum and Holloman (2009b) propose that 5' end strand invasion promoted by collaboration between Rad51 and Brh2 could be used for bypassing lesions during DNA replication, potentially advancing understanding of BRCA2 tumor suppressor function.
View Article and Find Full Text PDFHomologous recombination (HR) is considered to be an error-free mechanism for the repair of DNA double-strand breaks (DSBs). Indeed, most DSB repair events occur by a non-crossover mechanism limiting loss of heterozygosity (LOH) for markers downstream of the site of repair and preventing chromosome rearrangements. However, DSBs that arise by replication fork collapse or by erosion of uncapped telomeres have only one free end and are thought to repair by strand invasion into a homologous duplex DNA followed by replication to the chromosome end (break-induced replication, BIR).
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) are potentially lethal lesions that arise spontaneously during normal cellular metabolism, as a consequence of environmental genotoxins or radiation, or during programmed recombination processes. Repair of DSBs by homologous recombination generally occurs by gene conversion resulting from transfer of information from an intact donor duplex to both ends of the break site of the broken chromosome. In mitotic cells, gene conversion is rarely associated with reciprocal exchange and thus limits loss of heterozygosity for markers downstream of the site of repair and restricts potentially deleterious chromosome rearrangements.
View Article and Find Full Text PDF