Leader-follower modalities and other asymmetric interactions that drive the collective motion of organisms are often quantified using information theory metrics like transfer or causation entropy. These metrics are difficult to accurately evaluate without a much larger number of data than is typically available from a time series of animal trajectories collected in the field or from experiments. In this paper, we use a generalized leader-follower model to argue that the time-separated mutual information between two organism positions can serve as an alternative metric for capturing asymmetric correlations that is much less data intensive and more accurately estimated by popular -nearest neighbor algorithms than transfer entropy.
View Article and Find Full Text PDFCollective animal behavior arises from individual motivations and social interactions that are critical for individual fitness. Fish have long inspired investigations into collective motion, specifically, their ability to integrate environmental and social information across ecological contexts. This demonstration illustrates techniques used for quantifying behavioral responses of fish, in this case, Golden Shiner (Notemigonus crysoleucas), to visual stimuli using computer visualization and digital image analysis.
View Article and Find Full Text PDFSocial animals are capable of enhancing their awareness by paying attention to their neighbors, and prey found in groups can also confuse their predators. Both sides of these sensory benefits have long been appreciated, yet less is known of how the perception of events from the perspectives of both prey and predator can interact to influence their encounters. Here we examined how a visual sensory mechanism impacts the collective motion of prey and, subsequently, how their resulting movements influenced predator confusion and capture ability.
View Article and Find Full Text PDFArtificial barriers have become ubiquitous features in freshwater ecosystems and they can significantly impact a region's biodiversity. Assessing the risk faced by fish forced to navigate their way around artificial barriers is largely based on assays of individual swimming behavior. However, social interactions can significantly influence fish movement patterns and alter their risk exposure.
View Article and Find Full Text PDF