Egfl7 (VE-statin) is a secreted protein mostly specific to the endothelial lineage during development and in the adult and which expression is enhanced during angiogenesis. Egfl7 involvement in human postnatal vasculogenesis remains unresolved yet. Our aim was to assess Egfl7 expression in several angiogenic cell types originating from human bone marrow, peripheral blood, or cord blood.
View Article and Find Full Text PDFActivation of the blood vessel endothelium is a critical step during inflammation. Endothelial cells stimulated by pro-inflammatory cytokines play an essential part in the adhesion and extravasation of circulating leukocytes into inflamed tissues. The endothelial egfl7 gene (VE-statin) represses endothelial cell activation in tumors, and prior observations suggested that it could also participate in the regulation of endothelial cell activation during inflammation.
View Article and Find Full Text PDFDownregulating the leukocyte adhesion molecules expressed by endothelial cells that line tumor blood vessels can limit the entry of immune effector cells into the tumor mass, thereby contributing to tumoral immune escape. Egfl7 (also known as VE-statin) is a secreted protein specifically expressed by endothelial cells in normal tissues and by cancer cells in various human tumors. High levels of Egfl7 correlate with higher tumor grade and poorer prognosis.
View Article and Find Full Text PDFAngiogenesis is the process by which new blood vessels arise from existing ones by the budding out of endothelial cell capillaries from the luminal side of blood vessels. Blood vessel formation is essential for organ development during embryogenesis and is associated with several physiological and pathological processes, such as wound healing and tumor development. The VE-statin/egfl7 gene is specifically expressed in endothelial cells during embryonic development and in the adult.
View Article and Find Full Text PDFExpansion of the thyroid microvasculature is the earliest event during goiter formation, always occurring before thyrocyte proliferation; however, the precise mechanisms governing this physiological angiogenesis are not well understood. Using reverse transcriptase-polymerase chain reaction and immunohistochemistry to measure gene expression and laser Doppler to measure blood flow in an animal model of goitrogenesis, we show that thyroid angiogenesis occurred into two successive phases. The first phase lasted a week and involved vascular activation; this process was thyroid-stimulating hormone (TSH)-independent and was directly triggered by expression of vascular endothelial growth factor (VEGF) by thyrocytes as soon as the intracellular iodine content decreased.
View Article and Find Full Text PDFBreast cancer is the most common cancer in women and a significant cause of death. Mutations of the oncosuppressor genes BRCA1 and BRCA2 are associated with a hereditary risk of breast cancer, and dysregulation of their expression has been observed in sporadic cases. Soya isoflavones have been shown to inhibit breast cancer in studies in vitro, but associations between the consumption of isoflavone-containing foods and breast cancer risk have varied in epidemiological studies.
View Article and Find Full Text PDFProtein Expr Purif
March 2006
We have recently discovered VE-statin (egfl7), a novel protein specifically expressed by endothelial cells during mouse development and in the adult. VE-statin is expected to play an essential role during the formation of new blood vessels. Here, we have expressed the coding sequence for VE-statin in bacteria and designed a protocol for the production and purification of large amounts of the protein.
View Article and Find Full Text PDF