Publications by authors named "Bertrand Boeken"

The concept of microsites for recruitment is central to plant ecology, but it is unclear whether these sites are abstract constructs or real entities. I hypothesize that, in generally microsite-limited communities, microsites comprise a limiting physical resource for which different species compete. I tested this hypothesis on winter-annual communities on biocrust in the semiarid Northern Negev of Israel, in which most species are microsite-limited, while the dominant grass (Stipa capensis) has overcome this limitation by efficient microsite acquisition and a lack of secondary seed dormancy.

View Article and Find Full Text PDF

Climate change is expected to reduce annual precipitation by 20% and increase its standard deviation by 20% in the eastern Mediterranean. We have examined how these changes may affect herbaceous aboveground net primary production (ANPP) and its inter-annual coefficient of variation (CV) in natural rangelands along a desert-Mediterranean precipitation gradient, at five sites representing arid, semi-arid, and Mediterranean-type ecosystems, respectively, all showing positive linear relationships between herbaceous ANPP and annual precipitation. Scenarios of reduced annual precipitation and increased inter-annual precipitation variability were defined by manipulating mean annual precipitation (MAP) and its standard deviation.

View Article and Find Full Text PDF

Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population.

View Article and Find Full Text PDF

We investigated whether plant diversity and productivity in small-scale soil disturbances, which is known to be higher than in undisturbed soil, decreases as the density of the disturbances increases. We studied this in an experiment with soil diggings (15 cm diameter and 15 cm depth) dug at a range of densities, on a north- and a south-facing slope of a watershed in the central Negev Desert of Israel. The diggings were similar to the commonly occurring pits made by porcupines (Hystrix indica) as they forage for below-ground plant parts.

View Article and Find Full Text PDF

Annual biomass increment and biomass partitioning to leaves, roots and reproduction, and biomass storage in the below-ground bulb was measured in plants of two species of the geophytic genus Bellevalia grown outdoors at three levels of soil moisture. The differences between the species were in accordance with the hypothesis that plants of more arid environments should rely more on internal reserves than plants of more productive environments. In Bellevalia desertorum, a shallow rooted species of the most arid habitats in the Central Negev, leaf and root development during outgrowth at the beginning of winter was rather variable, and followed soil moisture availability to a certain degree.

View Article and Find Full Text PDF

During five consecutive growing seasons (winters) ca. 110 plants of the desert geophyte Bellevalia desertorum were marked individually in a 25 m plot on a south-facing slope in the central Negev Desert of Israel. The number of rosette leaves of each plant was recorded, as well as whether it flowered and produced seeds.

View Article and Find Full Text PDF