Publications by authors named "Bertolini T"

Background: Factor IX inhibitor formation is the most serious complication of replacement therapy for the bleeding disorder hemophilia B, exacerbated by severe allergic reactions occurring in up to 60% of patients with inhibitors. Low success rates of immune tolerance induction therapy in hemophilia B necessitate the search for novel immune tolerance therapies. Skin-associated lymphoid tissues have been successfully targeted in allergen-specific immunotherapy.

View Article and Find Full Text PDF

Oral administration of antigen induces regulatory T cells (Treg) that can not only control local immune responses in the small intestine, but also traffic to the central immune system to deliver systemic suppression. Employing murine models of the inherited bleeding disorder hemophilia, we find that oral antigen administration induces three CD4+ Treg subsets, namely FoxP3+LAP-, FoxP3+LAP+, and FoxP3-LAP+. These T cells act in concert to suppress systemic antibody production induced by therapeutic protein administration.

View Article and Find Full Text PDF

There is evidence that IL-22 and IL-17 participate in the pathogenesis of allergic asthma. To investigate the role of IL-22, we used IL-22 deficient mice (IL-22 KO) sensitized and challenged with ovalbumin (OVA) and compared with wild type (WT) animals exposed to OVA. IL-22 KO animals exposed to OVA showed a decreased number and frequency of eosinophils, IL-5 and IL-13 in the airways, reduced mucus production and pulmonary inflammation.

View Article and Find Full Text PDF

Despite >80 years of clinical experience with coagulation factor VIII (FVIII) inhibitors, surprisingly little is known about the in vivo mechanism of this most serious complication of replacement therapy for hemophilia A. These neutralizing antidrug alloantibodies arise in ∼30% of patients. Inhibitor formation is T-cell dependent, but events leading up to helper T-cell activation have been elusive because of, in part, the complex anatomy and cellular makeup of the spleen.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigated the use of oral anti-CD3 monoclonal antibodies to prevent the formation of anti-drug antibodies (ADAs) in hemophilia A mice undergoing clotting factor VIII (FVIII) protein replacement therapy.
  • - Administering low-dose oral anti-CD3 F(ab') led to a reduction in neutralizing ADAs, especially when given at the same time as FVIII therapy, with immune tolerance linked to certain populations of CD4 T cells.
  • - Combining oral anti-CD3 treatment with oral FVIII antigen intake did not enhance the suppression of ADAs, indicating that while oral anti-CD3 shows promise, its mechanisms of action are different and not synergistic with the FVIII antigen approach.
View Article and Find Full Text PDF

Hepatic adeno-associated viral (AAV) gene transfer has the potential to cure the X-linked bleeding disorder hemophilia A. However, declining therapeutic coagulation factor VIII (FVIII) expression has plagued clinical trials. To assess the mechanistic underpinnings of this loss of FVIII expression, we developed a hemophilia A mouse model that shares key features observed in clinical trials.

View Article and Find Full Text PDF

Adeno associated viral (AAV) vectors have emerged as a preferred platform for gene replacement therapy and represent one of the most promising strategies to treat monogenetic disorders such as hemophilia. However, immune responses to gene transfer have hampered human gene therapy in clinical trials. Over the past decade, it has become clear that innate immune recognition provides signals for the induction of antigen-specific responses against vector or transgene product.

View Article and Find Full Text PDF

Anti-drug antibody (ADA) formation is a major complication in treatment of the X-linked bleeding disorder haemophilia B (deficiency in coagulation factor IX, FIX). Current clinical immune tolerance protocols are often not effective due to complications such as anaphylactic reactions against FIX. Plant-based oral tolerance induction may address this problem, as illustrated by the recent first regulatory approval of orally delivered plant cells to treat peanut allergy.

View Article and Find Full Text PDF

Oral antigen administration to induce regulatory T cells (Treg) takes advantage of regulatory mechanisms that the gastrointestinal tract utilizes to promote unresponsiveness against food antigens or commensal microorganisms. Recently, antigen-based oral immunotherapies (OITs) have shown efficacy as treatment for food allergy and autoimmune diseases. Similarly, OITs appear to prevent anti-drug antibody responses in replacement therapy for genetic diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Fusion proteins combined with cholera toxin subunit B, when delivered orally in a plant-based form, promote immune tolerance in hemophilia A and B, leading to the creation of regulatory T cells (Tregs) that suppress harmful antibodies.
  • Research indicates that these oral antigens specifically enhance a subtype of Tregs in the small intestine, which are more effective in preventing antibody formation against factor IX compared to other Tregs.
  • The process requires bacterial enzymes from the gut microbiome to partially break down plant cell walls, highlighting the importance of intestinal microbiota in the immune response and suggesting potential ways to improve tolerance induction.
View Article and Find Full Text PDF

Ethnopharmacological Relevance: Propolis is a natural product produced by honeybees used as a medicine at least to 300 BC. In the last decades, several studies showed biological and pharmacological properties of propolis, witch scientifically explains the empirical use for centuries. The anti-inflammatory activity of propolis with the purpose to reduce Th2 inflammation has been evaluated in allergic asthma.

View Article and Find Full Text PDF

Chronic pulmonary inflammation marked predominantly by CD4IFN-γ cells is the hallmark of tuberculosis pathogenesis in immunocompetent adults, who are substantially affected by this disease. Moreover, CD4Foxp3 cell-mediated suppression contributes to infection susceptibility. We addressed the role of CD4Foxp3 cells in tuberculosis pathogenesis, because this aspect has not been addressed during chronic infection.

View Article and Find Full Text PDF

Given the impossibility to study the lung immune response during Mycobacterium tuberculosis-latent infection, and consequently, the mechanisms that control the bacterial load, it is reasonable to determine the activation of local immunity in the early phase of the infection. The phosphatidylinositol-3-kinase gamma enzyme (PI3Kγ) is involved in the leukocyte recruitment, phagocytosis and cellular differentiation, and therefore, it is considered a promising target for the development of immunotherapies for chronic inflammatory diseases. Mice genetically deficient in PI3Kγ (PI3Kγ) or WT (Wild Type) were evaluated 15 days post-infection.

View Article and Find Full Text PDF

Two-dimensional transition metal dichalcogenides (TMDs) have appeared on the horizon of materials science and solid-state physics due to their unique properties and diverse applications. TMD performance depends strongly on material quality and defect morphology. Calculations predict that sulfur adatom and vacancy are among the most energetically favorable defects in MoS with vacancies frequently observed during chemical vapor deposition.

View Article and Find Full Text PDF

The protective effects of mycobacterial infections on lung allergy are well documented. However, the inverse relationship between tuberculosis and type 2 immunity is still elusive. Although type 1 immunity is essential to protection against Mycobacterium tuberculosis it might be also detrimental to the host due to the induction of extensive tissue damage.

View Article and Find Full Text PDF

A simple and fast chromatographic method using ultraviolet diode-array detector (UV-DAD) was developed for the automatic high performance liquid chromatography (HPLC) determination of the title of oleuropein in a new dietary supplements in form of effervescent granules. The chromatographic separations were performed on a C18 core-shell column with detection at λ=232nm. The mobile phase consisted of deionized water with 0.

View Article and Find Full Text PDF

M1 macrophages are more effective in the induction of the inflammatory response and clearance of Mycobacterium tuberculosis than M2 macrophages. Infected C57BL/6 mice generate a stronger cellular immune response compared with BALB/c mice. We hypothesized that infected C57BL/6 mice would exhibit a higher frequency and function of M1 macrophages than infected BALB/c mice.

View Article and Find Full Text PDF

The voltage-gated potassium channel Kv1.3 is a novel target for immunomodulation of autoreactive effector memory T cells, which play a major role in the pathogenesis of autoimmune diseases. In this study, the Ts6 and Ts15 toxins isolated from Tityus serrulatus (Ts) were investigated for their immunosuppressant roles on CD4(+) cell subsets: naive, effector (TEF ), central memory (TCM) and effector memory (TEM).

View Article and Find Full Text PDF

Halophilic microorganisms are able to grow in the presence of salt and are also excellent source of enzymes and biotechnological products, such as exopolysaccharides (EPSs) and polyhydroxyalkanoates (PHAs). Salt-tolerant bacteria were screened in the Organic Composting Production Unit (OCPU) of São Paulo Zoological Park Foundation, which processes 4 ton/day of organic residues including plant matter from the Atlantic Rain Forest, animal manure and carcasses and mud from water treatment. Among the screened microorganisms, eight halotolerant bacteria grew at NaCl concentrations up to 4 M.

View Article and Find Full Text PDF

Background: Allergic asthma is a chronic pulmonary disease characterized by a Th2 inflammatory response. The modulation of a Th2 immune response based on immune deviation to a Th1 pattern or induction and migration of regulatory T cells to the lungs constitutes one of the major therapeutic approaches that is being investigated for the treatment of allergic asthma. The potentials of Mycobacterium leprae 65-kD heat-shock protein or Toll-like receptor 9 ligand (CpG oligodeoxynucleotides) as immune modulators for the treatment of airway allergic disease have been studied individually.

View Article and Find Full Text PDF

The magnitude of the cellular adaptive immune response is critical for the control of Mycobacterium tuberculosis infection in the chronic phase. In addition, the genetic background is equally important for resistance or susceptibility to tuberculosis. In this study, we addressed whether lung populations of dendritic cells, obtained from genetically different hosts, would play a role in the magnitude and function of CD4(+) populations generated after M.

View Article and Find Full Text PDF

A simple, sensitive and fast hydrophilic interaction liquid chromatography (HILIC) method using ultraviolet diode-array detector (UV-DAD)/electrospray ionization tandem mass spectrometry was developed for the automated high performance liquid chromatography (HPLC) determination of sodium risedronate (SR) and its degradation products in new pharmaceuticals. The chromatographic separations were performed on Ascentis Express HILIC 2.7μm (150mm×2.

View Article and Find Full Text PDF

Water-use efficiency (WUE), thought to be a relevant trait for productivity and adaptation to water-limited environments, was estimated for three different ecosystems on the Mediterranean island of Pianosa: Mediterranean macchia (SMM), transition (S(TR)) and abandoned agricultural (SAA) ecosystems, representing a successional series. Three independent approaches were used to study WUE: eddy covariance measurements, C isotope composition of ecosystem respired CO2, and C isotope discrimination (Δ) of leaf material (dry matter and soluble sugars). Seasonal variations in C-water relations and energy fluxes, compared in S(MM) and in SAA, were primarily dependent on the specific composition of each plant community.

View Article and Find Full Text PDF

In various types of snake venom, the major toxic components are proteinases and members of the phospholipase A2 family, although other enzymes also contribute to the toxicity. In this study, we evaluated the proteolytic, phospholipase, and L-Amino acid oxidase activities in the venom of five Bothrops species-Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni, Bothrops neuwiedi, and Bothrops alternatus-all of which are used in the production of commercial antivenom, prepared in horses. The enzymatic activities of each species' venom were classified as high, moderate, or low.

View Article and Find Full Text PDF