Acute respiratory distress syndrome (ARDS) is a common cause of hypoxemic respiratory failure and death in critically ill patients, and there is an urgent need to find effective therapies. Preclinical studies have shown that inhaled halogenated agents may have beneficial effects in animal models of ARDS. The development of new devices to administer halogenated agents using modern intensive care unit (ICU) ventilators has significantly simplified the dispensing of halogenated agents to ICU patients.
View Article and Find Full Text PDFThe receptor for advanced glycation end-products (RAGE) modulates the pathogenesis of acute respiratory distress syndrome (ARDS). RAGE inhibition attenuated lung injury and restored alveolar fluid clearance (AFC) in a mouse model of ARDS. However, clinical translation will require assessment of this strategy in larger animals.
View Article and Find Full Text PDFAcute respiratory distress syndrome (ARDS) is a syndrome of diffuse alveolar injury with impaired alveolar fluid clearance and severe inflammation. The use of halogenated agents, such as sevoflurane or isoflurane, for the sedation of intensive care unit (ICU) patients can improve gas exchange, reduce alveolar edema, and attenuate inflammation during ARDS. However, data on the use of inhaled agents for continuous sedation in the ICU to treat or prevent lung damage is lacking.
View Article and Find Full Text PDF