In light of the frequent development of therapeutic resistance in cancer treatment, there is a strong need for personalized model systems representing patient tumor heterogeneity, while enabling parallel drug testing and identification of appropriate treatment responses in individual patients. Using ovarian cancer as a prime example of a heterogeneous tumor disease, we developed a 3D preclinical tumor model comprised of patient-derived microtumors (PDM) and autologous tumor-infiltrating lymphocytes (TILs) to identify individual treatment vulnerabilities and validate chemo-, immuno- and targeted therapy efficacies. Enzymatic digestion of primary ovarian cancer tissue and cultivation in defined serum-free media allowed rapid and efficient recovery of PDM, while preserving histopathological features of corresponding patient tumor tissue.
View Article and Find Full Text PDFBackground: PGRMC1 (progesterone receptor membrane component 1) is a highly conserved heme binding protein, which is overexpressed especially in hormone receptor-positive breast cancer and plays an important role in breast carcinogenesis. Nevertheless, little is known about the mechanisms by which PGRMC1 drives tumor progression. The aim of our study was to investigate the involvement of PGRMC1 in cholesterol metabolism to detect new mechanisms by which PGRMC1 can increase lipid metabolism and alter cancer-related signaling pathways leading to breast cancer progression.
View Article and Find Full Text PDFMenopausal hormone therapy, using estrogen and synthetic progestins, is associated with an increased risk of developing breast cancer. The effect of progestins on breast cells is complex and not yet fully understood. In previous and studies, we found different progestins to increase the proliferation of Progesterone Receptor Membrane Component-1 (PGRMC1)-overexpressing MCF7 cells (MCF7/PGRMC1), suggesting a possible role of PGRMC1 in transducing membrane-initiated progestin signals.
View Article and Find Full Text PDFCirculating tumor cells (CTCs) are the potential precursors of metastatic disease. Most assays established for the enumeration of CTCs so far-including the gold standard CellSearch-rely on the expression of the cell surface marker epithelial cell adhesion molecule (EpCAM). But, these approaches may not detect CTCs that express no/low levels of EpCAM, e.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) carries the most dismal prognosis of all solid tumors and is generally strongly resistant to currently available chemo- and/or radiotherapy regimens, including targeted molecular therapies. Therefore, unraveling the molecular mechanisms underlying the aggressive behavior of pancreatic cancer is a necessary prerequisite for the development of novel therapeutic approaches. We previously identified the protein placenta-specific 8 (PLAC8, onzin) in a genome-wide search for target genes associated with pancreatic tumor progression and demonstrated that PLAC8 is strongly ectopically expressed in advanced preneoplastic lesions and invasive human PDAC.
View Article and Find Full Text PDFReverse phase protein arrays (RPPA) are an established tool for measuring the expression and activation status of multiple proteins in parallel using only very small amounts of tissue. Several studies have demonstrated the value of this technique for signaling pathway analysis using proteins extracted from fresh frozen (FF) tissue in line with validated antibodies for this tissue type; however, formalin fixation and paraffin embedding (FFPE) is the standard method for tissue preservation in the clinical setting. Hence, we performed RPPA to measure profiles for a set of 300 protein markers using matched FF and FFPE tissue specimens to identify which markers performed similarly using the RPPA technique in fixed and unfixed tissues.
View Article and Find Full Text PDFReverse-phase protein arrays (RPPAs) have become an important tool for the sensitive and high-throughput detection of proteins from minute amounts of lysates from cell lines and cryopreserved tissue. The current standard method for tissue preservation in almost all hospitals worldwide is formalin fixation and paraffin embedding, and it would be highly desirable if RPPA could also be applied to formalin-fixed and paraffin embedded (FFPE) tissue. We investigated whether the analysis of FFPE tissue lysates with RPPA would result in biologically meaningful data in two independent studies.
View Article and Find Full Text PDFCancer is caused by a complex pattern of molecular perturbations. To understand the biology of cancer, it is thus important to look at the activation state of key proteins and signaling networks. The limited amount of available sample material from patients and the complexity of protein expression patterns make the use of traditional protein analysis methods particularly difficult.
View Article and Find Full Text PDFProtein-kinase inhibitors are among the most advanced compounds in development using the new drug discovery paradigm of developing small-molecule drugs against specific molecular targets in cancer. After treatment with a cyclin dependent kinase CDK2 inhibitor in monkey, histopathological analysis of the eye showed specific cellular damage in the photoreceptor layer. Since this CDK2 inhibitor showed activity also on other CDKs, in order to investigate the mechanism of toxicity of this compound, we isolated cones and rods from the retina of normal monkey and humans by Laser Capture Microdissection.
View Article and Find Full Text PDF