High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.
View Article and Find Full Text PDFCulture can have a major impact on how we perceive different hazards. In the Romantic period, nature was described and portrayed as mysterious and benevolent. A deep connection to nature was perceived as important.
View Article and Find Full Text PDFA search for the exclusive hadronic decays W^{±}→π^{±}γ, W^{±}→K^{±}γ, and W^{±}→ρ^{±}γ is performed using up to 140 fb^{-1} of proton-proton collisions recorded with the ATLAS detector at a center-of-mass energy of sqrt[s]=13 TeV. If observed, these rare processes would provide a unique test bench for the quantum chromodynamics factorization formalism used to calculate cross sections at colliders. Additionally, at future colliders, these decays could offer a new way to measure the W boson mass through fully reconstructed decay products.
View Article and Find Full Text PDFBackground: People with cystic fibrosis (pwCF) have barriers to physical activity including exercise intolerance and fatigue. The advent of small molecule cystic fibrosis transmembrane conductance regulator (CFTR) modulators have shown great clinical improvements in pwCF; however, the effect of CFTR modulators on exercise perception and participation is unknown. The purpose of this study was to investigate whether the administration of CFTR modulators changed the perception and participation in sport and exercise in pwCF.
View Article and Find Full Text PDFThis Letter presents results from a combination of searches for Higgs boson pair production using 126-140 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV recorded with the ATLAS detector. At 95% confidence level (CL), the upper limit on the production rate is 2.9 times the standard model (SM) prediction, with an expected limit of 2.
View Article and Find Full Text PDFThis Letter presents the first study of the energy dependence of diboson polarization fractions in WZ→ℓνℓ^{'}ℓ^{'}(ℓ,ℓ^{'}=e,μ) production. The dataset used corresponds to an integrated luminosity of 140 fb^{-1} of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector. Two fiducial regions with an enhanced presence of events featuring two longitudinally polarized bosons are defined.
View Article and Find Full Text PDFStatistical combinations of searches for charginos and neutralinos using various decay channels are performed using 139 fb^{-1} of pp collision data at sqrt[s]=13 TeV with the ATLAS detector at the Large Hadron Collider. Searches targeting pure-wino chargino pair production, pure-wino chargino-neutralino production, or Higgsino production decaying via standard model W, Z, or h bosons are combined to extend the mass reach to the produced supersymmetric particles by 30-100 GeV. The depth of the sensitivity of the original searches is also improved by the combinations, lowering the 95% C.
View Article and Find Full Text PDFA combination of searches for a new resonance decaying into a Higgs boson pair is presented, using up to 139 fb^{-1} of pp collision data at sqrt[s]=13 TeV recorded with the ATLAS detector at the LHC. The combination includes searches performed in three decay channels: bb[over ¯]bb[over ¯], bb[over ¯]τ^{+}τ^{-}, and bb[over ¯]γγ. No excess above the expected Standard Model background is observed and upper limits are set at the 95% confidence level on the production cross section of Higgs boson pairs originating from the decay of a narrow scalar resonance with mass in the range 251 GeV-5 TeV.
View Article and Find Full Text PDFRecent studies reported how the COVID-19 pandemic influenced the medical education community. However, little is known about the further influence of the pandemic over time and about the impact across the different medical disciplines. Our objective was to investigate how residents working in different disciplines and on different tracks (full- vs part-time) perceived the influence of the COVID-19 pandemic in 2021 and 2022 on their education.
View Article and Find Full Text PDFHiggsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass splitting is O(1 GeV). This Letter presents a novel search for nearly mass-degenerate Higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass splittings between the lightest charged and neutral Higgsinos from 0.
View Article and Find Full Text PDFAngular correlations between heavy quarks provide a unique probe of the quark-gluon plasma created in ultrarelativistic heavy-ion collisions. Results are presented of a measurement of the azimuthal angle correlations between muons originating from semileptonic decays of heavy quarks produced in 5.02 TeV Pb+Pb and pp collisions at the LHC.
View Article and Find Full Text PDFPurpose Of Review: The incorporation of genetic counseling and testing is essential to evaluation and management of thoracic aortic disease in patients under 60 years of age and those with family histories suspicious for heritable thoracic aortic disease and disorders associated with increased risk for acute type-A aortic dissection.
Recent Findings: As many as 20% of individuals with thoracic aortic disease under the age of 60 years have autosomal dominant patterns of inheritance. A considerable number of heritability factors remain undefined for these families.
This Letter presents the first study of Higgs boson production in association with a vector boson (V=W or Z) in the fully hadronic qqbb final state using data recorded by the ATLAS detector at the LHC in proton-proton collisions at sqrt[s]=13 TeV and corresponding to an integrated luminosity of 137 fb^{-1}. The vector bosons and Higgs bosons are each reconstructed as large-radius jets and tagged using jet substructure techniques. Dedicated tagging algorithms exploiting b-tagging properties are used to identify jets consistent with Higgs bosons decaying into bb[over ¯].
View Article and Find Full Text PDFATLAS measured the centrality dependence of the dijet yield using 165 nb^{-1} of p+Pb data collected at sqrt[s_{NN}]=8.16 TeV in 2016. The event centrality, which reflects the p+Pb impact parameter, is characterized by the total transverse energy registered in the Pb-going side of the forward calorimeter.
View Article and Find Full Text PDFThis Letter reports the observation of WZγ production and a measurement of its cross section using 140.1±1.2 fb^{-1} of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider.
View Article and Find Full Text PDFThe first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018.
View Article and Find Full Text PDFA search for events with a dark photon produced in association with a dark Higgs boson via rare decays of the standard model Z boson is presented, using 139 fb^{-1} of sqrt[s]=13 TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider. The dark boson decays into a pair of dark photons, and at least two of the three dark photons must each decay into a pair of electrons or muons, resulting in at least two same-flavor opposite-charge lepton pairs in the final state. The data are found to be consistent with the background prediction, and upper limits are set on the dark photon's coupling to the dark Higgs boson times the kinetic mixing between the standard model photon and the dark photon, α_{D}ϵ^{2}, in the dark photon mass range of [5, 40] GeV except for the ϒ mass window [8.
View Article and Find Full Text PDFA measurement of the mass of the Higgs boson combining the H→ZZ^{*}→4ℓ and H→γγ decay channels is presented. The result is based on 140 fb^{-1} of proton-proton collision data collected by the ATLAS detector during LHC run 2 at a center-of-mass energy of 13 TeV combined with the run 1 ATLAS mass measurement, performed at center-of-mass energies of 7 and 8 TeV, yielding a Higgs boson mass of 125.11±0.
View Article and Find Full Text PDFThis Letter reports the observation of single top quarks produced together with a photon, which directly probes the electroweak coupling of the top quark. The analysis uses 139 fb^{-1} of 13 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. Requiring a photon with transverse momentum larger than 20 GeV and within the detector acceptance, the fiducial cross section is measured to be 688±23(stat) _{-71}^{+75}(syst) fb, to be compared with the standard model prediction of 515_{-42}^{+36} fb at next-to-leading order in QCD.
View Article and Find Full Text PDF