Publications by authors named "Bertha C Elias"

Acute kidney injury (AKI) affects over 13 million people worldwide annually and is associated with a 4-fold increase in mortality. Our lab and others have shown that DNA damage response (DDR) governs the outcome of AKI in a bimodal manner. Activation of DDR sensor kinases protects against AKI, while hyperactivation of DDR effector proteins, such as p53, induces cell death and worsens AKI.

View Article and Find Full Text PDF

Acute kidney injury (AKI) affects over 13 million people world-wide annually and is associated with a fourfold increase in mortality. Our lab and others have shown that DNA damage response (DDR) governs the outcome of AKI in a bimodal manner. Activation of DDR sensor kinases protects against AKI, while hyperactivation of DDR effector proteins, such as p53, induces to cell death and worsens AKI.

View Article and Find Full Text PDF

Acute kidney injury (AKI) occurs in approximately 13% of hospitalized patients and predisposes patients to chronic kidney disease (CKD) through the AKI-to-CKD transition. Studies from our laboratory and others have demonstrated that maladaptive repair of proximal tubule cells (PTCs), including induction of dedifferentiation, G2/M cell cycle arrest, senescence, and profibrotic cytokine secretion, is a key process promoting AKI-to-CKD transition, kidney fibrosis, and CKD progression. The molecular mechanisms governing maladaptive repair and the relative contribution of dedifferentiation, G2/M arrest, and senescence to CKD remain to be resolved.

View Article and Find Full Text PDF

Background: The root of many kidney diseases in humans can be traced to alterations or damage to subcellular organelles. Mitochondrial fragmentation, endoplasmic reticulum (ER) stress, and lysosomal inhibition, among others, ultimately contribute to kidney injury and are the target of therapeutics in development. Although recent technological advancements allow for the understanding of disease states at the cellular level, investigating changes in subcellular organelles from kidney tissue remains challenging.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is one of the top ten leading causes of death in the USA. Acute kidney injury (AKI), while often recoverable, predisposes patients to CKD later in life. Kidney epithelial cells have been identified as key signaling nodes in both AKI and CKD, whereby the cells can determine the course of the disease through the secretion of cytokines and other proteins.

View Article and Find Full Text PDF

A polarized collecting duct (CD), formed from the branching ureteric bud (UB), is a prerequisite for an intact kidney. The small Rho GTPase Rac1 is critical for actin cytoskeletal regulation. We investigated the role of Rac1 in the kidney collecting system by selectively deleting it in mice at the initiation of UB development.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a public health concern that affects approximately 10% of the global population. CKD is associated with poor outcomes due to high frequencies of comorbidities such as heart failure and cardiovascular disease. Uremic toxins are compounds that are usually filtered and excreted by the kidneys.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a global health problem. CKD patients are at high risk of developing cardiovascular disease (CVD), including coronary artery disease, heart failure and stroke. Several factors invoke a vicious cycle of CKD and CVD, which is referred as to "cardiorenal syndrome".

View Article and Find Full Text PDF

Maladaptive proximal tubule (PT) repair has been implicated in kidney fibrosis through induction of cell-cycle arrest at G2/M. We explored the relative importance of the PT DNA damage response (DDR) in kidney fibrosis by genetically inactivating ataxia telangiectasia and Rad3-related (ATR), which is a sensor and upstream initiator of the DDR. In human chronic kidney disease, ATR expression inversely correlates with DNA damage.

View Article and Find Full Text PDF

Kidney disease is estimated to affect 15% of the world's population. Autophagy is a key homeostatic pathway in eukaryotic cells, which has been linked to numerous pathological states. In the kidney, autophagy has been shown to modulate both acute and chronic injuries.

View Article and Find Full Text PDF

The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development and maintenance, its exact molecular function in kidney development is not well understood. In this study, we define the specific role of Cdc42 during murine kidney epithelial tubulogenesis by deleting it selectively at the initiation of ureteric bud or metanephric mesenchyme development.

View Article and Find Full Text PDF

Epithelial cells lining the gastrointestinal tract and kidney have different abilities to facilitate paracellular and transcellular transport of water and solutes. In the kidney, the proximal tubule allows both transcellular and paracellular transport, while the collecting duct primarily facilitates transcellular transport. The claudins and E-cadherin are major structural and functional components regulating paracellular transport.

View Article and Find Full Text PDF

Integrin receptors cluster on the cell surface and bind to extra cellular matrix (ECM) proteins triggering the formation of focal contacts and the activation of various signal transduction pathways that affect the morphology, motility, gene expression and survival of adherent cells. Polyamine depletion prevents the increase in autophosphorylation of focal adhesion kinase (FAK) and Src during attachment. Rac activity also shows a steady decline, and its upstream guanine nucleotide exchange factor (GEF), Tiam1 also shows a reduction in total protein level when cells are depleted of polyamines.

View Article and Find Full Text PDF

PKC eta is expressed predominantly in the epithelial tissues; however, its role in the regulation of epithelial tight junctions (TJs) is unknown. We present evidence that PKC eta phosphorylates occludin on threonine residues (T403 and T404) and plays a crucial role in the assembly and/or maintenance of TJs in Caco-2 and MDCK cell monolayers. Inhibition of PKC eta by specific pseudo substrate inhibitor or knockdown of PKC eta by specific shRNA disrupts the junctional distribution of occludin and ZO-1 and compromises the epithelial barrier function.

View Article and Find Full Text PDF

Occludin is phosphorylated on tyrosine residues during the oxidative stress-induced disruption of tight junction, and in vitro phosphorylation of occludin by c-Src attenuates its binding to ZO-1. In the present study mass spectrometric analyses of C-terminal domain of occludin identified Tyr-379 and Tyr-383 in chicken occludin as the phosphorylation sites, which are located in a highly conserved sequence of occludin, YETDYTT; Tyr-398 and Tyr-402 are the corresponding residues in human occludin. Deletion of YETDYTT motif abolished the c-Src-mediated phosphorylation of occludin and the regulation of ZO-1 binding.

View Article and Find Full Text PDF

Occludin is hyperphosphorylated on Ser and Thr residues in intact epithelial tight junction (TJ); however, the role of this phosphorylation in the assembly of TJ is unclear. The influence of protein phosphatases PP2A and PP1 on the assembly of TJ and phosphorylation of occludin was evaluated in Caco-2 cells. Protein phosphatase inhibitors and reduced expression of PP2A-Calpha and PP1alpha accelerated the calcium-induced increase in transepithelial electrical resistance and barrier to inulin permeability and also enhanced the junctional organization of occludin and ZO-1 during TJ assembly.

View Article and Find Full Text PDF