Critical thermal limits (CTLs) gauge the physiological impact of temperature on survival or critical biological function, aiding predictions of species range shifts and climatic resilience. Two recent Drosophila species studies, using similar approaches to determine temperatures that induce sterility (thermal fertility limits [TFLs]), reveal that TFLs are often lower than CTLs and that TFLs better predict both current species distributions and extinction probability. Moreover, many studies show fertility is more sensitive at less extreme temperatures than survival (thermal sensitivity of fertility [TSF]).
View Article and Find Full Text PDFThermal stress leads to fertility reduction, can cause temporal sterility and thus results in fitness loss with severe ecological and evolutionary consequences, e.g., threatening species persistence already at sub-lethal temperatures.
View Article and Find Full Text PDFThe predicted temperature increase caused by climate change is a threat to biodiversity. Across animal taxa, male reproduction is often sensitive to elevated temperatures leading to fertility loss, and in more adverse scenarios, this can result in sterility when males reach their upper thermal fertility limit. Here, we investigate temperature-induced changes in reproductive tissues, fertility reduction, sterility, and the associated fitness loss during the subsequent recovery phase in male .
View Article and Find Full Text PDFThe study of insect reproductive ecology is essential to determine species distributions and fate under changing environments. Species adapted to harsh environments are good examples to investigate the reproductive mechanisms that allow them to cope with the challenging conditions. We here focus on studying for the first time the reproductive ecology of a cold-adapted Drosophila obscura (Diptera: Drosophilidae) strain collected in Finland (subarctic climate region).
View Article and Find Full Text PDF