The protein catalyzed capture agent (PCC) method is a powerful combinatorial screening strategy for discovering synthetic macrocyclic peptide ligands, called PCCs, to designated protein epitopes. The foundational concept of the PCC method is the use of in situ click chemistry to survey large combinatorial libraries of peptides for ligands to designated biological targets. State-of-the-art PCC screens integrate synthetic libraries of constrained macrocyclic peptides with epitope-specific targeting strategies to identify high-affinity (<100 nM) binders de novo.
View Article and Find Full Text PDFChemically synthesized, small peptides that bind with high affinity and specificity to CD8-expressing (CD8+) tumor-infiltrating T cells, yet retain the desirable characteristics of small molecules, hold valuable potential for diagnostic molecular imaging of immune response. Here, we report the development of F-labeled peptides targeting human CD8α with nanomolar affinity via the strain-promoted sydnone-alkyne cycloaddition with 4-[F]fluorophenyl sydnone. The F-sydnone is produced in one step, in high radiochemical yield, and the peptide labeling proceeds rapidly.
View Article and Find Full Text PDFAntibiotic resistant infections are projected to cause over 10 million deaths by 2050, yet the development of new antibiotics has slowed. This points to an urgent need for methodologies for the rapid development of antibiotics against emerging drug resistant pathogens. We report on a generalizable combined computational and synthetic approach, called antibody-recruiting protein-catalyzed capture agents (AR-PCCs), to address this challenge.
View Article and Find Full Text PDFProtein-catalyzed capture agents (PCCs) are synthetic and modular peptide-based affinity agents that are developed through the use of single-generation in situ click chemistry screens against large peptide libraries. In such screens, the target protein, or a synthetic epitope fragment of that protein, provides a template for selectively promoting the noncopper catalyzed azide-alkyne dipolar cycloaddition click reaction between either a library peptide and a known ligand or a library peptide and the synthetic epitope. The development of epitope-targeted PCCs was motivated by the desire to fully generalize pioneering work from the Sharpless and Finn groups in which in situ click screens were used to develop potent, divalent enzymatic inhibitors.
View Article and Find Full Text PDFThe IL-17 cytokine family is associated with multiple immune and autoimmune diseases and comprises important diagnostic and therapeutic targets. This work reports the development of epitope-targeted ligands designed for differential detection of human IL-17F and its closest homologue IL-17A. Non-overlapping and unique epitopes on IL-17F and IL-17A were identified by comparative sequence analysis of the two proteins.
View Article and Find Full Text PDFWe report on peptide-based ligands matured through the protein catalyzed capture (PCC) agent method to tailor molecular binders for in vitro sensing/diagnostics and in vivo pharmacokinetics parameters. A vascular endothelial growth factor (VEGF) binding peptide and a peptide against the protective antigen (PA) protein of Bacillus anthracis discovered through phage and bacterial display panning technologies, respectively, were modified with click handles and subjected to iterative in situ click chemistry screens using synthetic peptide libraries. Each azide-alkyne cycloaddition iteration, promoted by the respective target proteins, yielded improvements in metrics for the application of interest.
View Article and Find Full Text PDFWe report on a method to improve in vitro diagnostic assays that detect immune response, with specific application to HIV-1. The inherent polyclonal diversity of the humoral immune response was addressed by using sequential in situ click chemistry to develop a cocktail of peptide-based capture agents, the components of which were raised against different, representative anti-HIV antibodies that bind to a conserved epitope of the HIV-1 envelope protein gp41. The cocktail was used to detect anti-HIV-1 antibodies from a panel of sera collected from HIV-positive patients, with improved signal-to-noise ratio relative to the gold standard commercial recombinant protein antigen.
View Article and Find Full Text PDFThe rates of deamidation of alpha-synuclein and single Asn residues in 13 Asn-sequence mutants have been measured for 5 x 10(-5)M protein in both the absence and presence of 10(-2)M sodium dodecyl sulfate (SDS). In the course of these experiments, 370 quantitative protein deamidation measurements were performed and 37 deamidation rates were determined by ion cyclotron resonance Fourier transform mass spectrometry, using an improved whole protein isotopic envelope method and a mass defect method with both enzymatic and collision-induced fragmentation. The measured deamidation index of alpha-synuclein was found to be 0.
View Article and Find Full Text PDFTertiary contact formation rates in alpha-synuclein, an intrinsically disordered polypeptide implicated in Parkinson's disease, have been determined from measurements of diffusion-limited electron-transfer kinetics between triplet-excited tryptophan:3-nitrotyrosine pairs separated by 10, 12, 55, and 90 residues. Calculations based on a Markovian lattice model developed to describe intrachain diffusion dynamics for a disordered polypeptide give contact quenching rates for various loop sizes ranging from 6 to 48 that are in reasonable agreement with experimentally determined values for small loops (10-20 residues). Contrary to expectations, measured contact rates in alpha-synuclein do not continue to decrease as the loop size increases (>/=35 residues), and substantial deviations from calculated rates are found for the pairs W4-Y94, Y39-W94, and W4-Y136.
View Article and Find Full Text PDF