Publications by authors named "Bert L de Groot"

Aquaporin-0 (AQP0) tetramers form square arrays in lens membranes through a yet unknown mechanism, but lens membranes are enriched in sphingomyelin and cholesterol. Here, we determined electron crystallographic structures of AQP0 in sphingomyelin/cholesterol membranes and performed molecular dynamics (MD) simulations to establish that the observed cholesterol positions represent those seen around an isolated AQP0 tetramer and that the AQP0 tetramer largely defines the location and orientation of most of its associated cholesterol molecules. At a high concentration, cholesterol increases the hydrophobic thickness of the annular lipid shell around AQP0 tetramers, which may thus cluster to mitigate the resulting hydrophobic mismatch.

View Article and Find Full Text PDF
Article Synopsis
  • TREK1 is a potassium channel that helps control cell resting potential and could be a key target for treating neuropathy.
  • Recent research has identified two small molecules (Q6F and Q5F) that enhance the activity of TREK1, influencing how the channel opens and closes.
  • Simulations reveal that the stability of hydrogen bond networks near the channel's selectivity filter plays a crucial role in its function, suggesting new strategies for designing better therapeutic ligands.
View Article and Find Full Text PDF

The rapid advancement in computational power available for research offers to bring not only quantitative improvements, but also qualitative changes in the field of biomolecular simulation. Here, we review the state of biomolecular dynamics simulations at the threshold to exascale resources becoming available. Both developments in parallel and distributed computing will be discussed, providing a perspective on the state of the art of both.

View Article and Find Full Text PDF

Potassium (K) channels combine high conductance with high ion selectivity. To explain this efficiency, two molecular mechanisms have been proposed. The "direct knock-on" mechanism is defined by water-free K permeation and formation of direct ion-ion contacts in the highly conserved selectivity filter (SF).

View Article and Find Full Text PDF

In drug discovery, the in silico prediction of binding affinity is one of the major means to prioritize compounds for synthesis. Alchemical relative binding free energy (RBFE) calculations based on molecular dynamics (MD) simulations are nowadays a popular approach for the accurate affinity ranking of compounds. MD simulations rely on empirical force field parameters, which strongly influence the accuracy of the predicted affinities.

View Article and Find Full Text PDF

In a protein, nearby titratable sites can be coupled: the (de)protonation of one may affect the other. The degree of this interaction depends on several factors and can influence the measured . Here, we derive a formalism based on double free energy differences ( ) for quantifying the individual site values of coupled residues.

View Article and Find Full Text PDF

Cancer invasion and metastasis are known to be potentiated by the expression of aquaporins (AQPs). Likewise, the expression levels of AQPs have been shown to be prognostic for survival in patients and have a role in tumor growth, edema, angiogenesis, and tumor cell migration. Thus, AQPs are key players in cancer biology and potential targets for drug development.

View Article and Find Full Text PDF
Article Synopsis
  • Coulomb interactions in molecular simulations are often approximated due to limitations in computational resources, leading to issues with finite-size artifacts.
  • Current methods for handling long-range electrostatic interactions, like lattice-sum techniques, can introduce inaccuracies, especially in free-energy calculations involving charge changes.
  • This study explores ways to minimize these artifacts, highlighting that using larger, neutral simulation boxes and adding salt can help improve the accuracy of simulations and free-energy calculations.
View Article and Find Full Text PDF

The stability, solubility, and function of a protein depend on both its net charge and the protonation states of its individual residues. p is a measure of the tendency for a given residue to (de)protonate at a specific pH. Although p values can be resolved experimentally, theory and computation provide a compelling alternative.

View Article and Find Full Text PDF

K+ channel activity can be limited by C-type inactivation, which is likely initiated in part by dissociation of K+ ions from the selectivity filter and modulated by the side chains that surround it. While crystallographic and computational studies have linked inactivation to a "collapsed" selectivity filter conformation in the KcsA channel, the structural basis for selectivity filter gating in other K+ channels is less clear. Here, we combined electrophysiological recordings with molecular dynamics simulations, to study selectivity filter gating in the model potassium channel MthK and its V55E mutant (analogous to KcsA E71) in the pore-helix.

View Article and Find Full Text PDF

Aquaporin-0 (AQP0) tetramers form square arrays in lens membranes through a yet unknown mechanism, but lens membranes are enriched in sphingomyelin and cholesterol. Here, we determined electron crystallographic structures of AQP0 in sphingomyelin/cholesterol membranes and performed molecular dynamics (MD) simulations to establish that the observed cholesterol positions represent those seen around an isolated AQP0 tetramer and that the AQP0 tetramer largely defines the location and orientation of most of its associated cholesterol molecules. At a high concentration, cholesterol increases the hydrophobic thickness of the annular lipid shell around AQP0 tetramers, which may thus cluster to mitigate the resulting hydrophobic mismatch.

View Article and Find Full Text PDF

In drug discovery, computational methods are a key part of making informed design decisions and prioritising experiments. In particular, optimizing compound affinity is a central concern during the early stages of development. In the last 10 years, alchemical free energy (FE) calculations have transformed our ability to incorporate accurate in silico potency predictions in design decisions, and represent the 'gold standard' for augmenting experiment-driven drug discovery.

View Article and Find Full Text PDF

The hydrophobic gating model, in which ion permeation is inhibited by the hydrophobicity, rather than a physical occlusion of the nanopore, functions in various ion channels including potassium channels. Available research focused on the energy barriers for ion/water conduction due to the hydrophobicity, whereas how hydrophobic gating affects the function and structure of channels remains unclear. Here, we use potassium channels as examples and conduct molecular dynamics simulations to investigate this problem.

View Article and Find Full Text PDF

Potassium channels are responsible for the selective yet efficient permeation of potassium ions across cell membranes. Despite many available high-resolution structures of potassium channels, those conformations inform only on static information on the ion permeation processes. Here, we use molecular dynamics simulations and Markov state models to obtain dynamical details of ion permeation.

View Article and Find Full Text PDF

Oligomeric aggregates of the amyloid-beta peptide(1-42) (Aβ42) are regarded as a primary cause of cytotoxicity related to membrane damage in Alzheimer's disease. However, a dynamical and structural characterization of pore-forming Aβ42 oligomers at atomic detail has not been feasible. Here, we used Aβ42 oligomer structures previously determined in a membrane-mimicking environment as putative model systems to study the pore formation process in phospholipid bilayers with all-atom molecular dynamics simulations.

View Article and Find Full Text PDF

α-synuclein misfolding and aggregation into fibrils is a common feature of α-synucleinopathies, such as Parkinson's disease, in which α-synuclein fibrils are a characteristic hallmark of neuronal inclusions called Lewy bodies. Studies on the composition of Lewy bodies extracted postmortem from brain tissue of Parkinson's patients revealed that lipids and membranous organelles are also a significant component. Interactions between α-synuclein and lipids have been previously identified as relevant for Parkinson's disease pathology, however molecular insights into their interactions have remained elusive.

View Article and Find Full Text PDF

Drug discovery can be thought of as a search for a needle in a haystack: searching through a large chemical space for the most active compounds. Computational techniques can narrow the search space for experimental follow up, but even they become unaffordable when evaluating large numbers of molecules. Therefore, machine learning (ML) strategies are being developed as computationally cheaper complementary techniques for navigating and triaging large chemical libraries.

View Article and Find Full Text PDF

Aggregation of amyloidogenic proteins is a characteristic of multiple neurodegenerative diseases. Atomic resolution of small molecule binding to such pathological protein aggregates is of interest for the development of therapeutics and diagnostics. Here we investigate the interaction between α-synuclein fibrils and anle138b, a clinical drug candidate for disease modifying therapy in neurodegeneration and a promising scaffold for positron emission tomography tracer design.

View Article and Find Full Text PDF

Exascale computing has been a dream for ages and is close to becoming a reality that will impact how molecular simulations are being performed, as well as the quantity and quality of the information derived for them. We review how the biomolecular simulations field is anticipating these new architectures, making emphasis on recent work from groups in the BioExcel Center of Excellence for High Performance Computing. We exemplified the power of these simulation strategies with the work done by the HPC simulation community to fight Covid-19 pandemics.

View Article and Find Full Text PDF

Partner recognition in protein binding is critical for all biological functions, and yet, delineating its mechanism is challenging, especially when recognition happens within microseconds. We present a theoretical and experimental framework based on straight-forward nuclear magnetic resonance relaxation dispersion measurements to investigate protein binding mechanisms on sub-millisecond timescales, which are beyond the reach of standard rapid-mixing experiments. This framework predicts that conformational selection prevails on ubiquitin's paradigmatic interaction with an SH3 (Src-homology 3) domain.

View Article and Find Full Text PDF

We assess costs and efficiency of state-of-the-art high-performance cloud computing and compare the results to traditional on-premises compute clusters. Our use case is atomistic simulations carried out with the GROMACS molecular dynamics (MD) toolkit with a particular focus on alchemical protein-ligand binding free energy calculations. We set up a compute cluster in the Amazon Web Services (AWS) cloud that incorporates various different instances with Intel, AMD, and ARM CPUs, some with GPU acceleration.

View Article and Find Full Text PDF

The flow of ions across cell membranes facilitated by ion channels is an important function for all living cells. Despite the huge amount of structural data provided by crystallography, elucidating the exact interactions between the selectivity filter atoms and bound ions is challenging. Here, we detect bound N-labeled ammonium ions as a mimic for potassium ions in ion channels using solid-state NMR under near-native conditions.

View Article and Find Full Text PDF

Nowadays, drug design projects benefit from highly accurate protein-ligand binding free energy predictions based on molecular dynamics simulations. While such calculations have been computationally expensive in the past, we now demonstrate that workflows built on open source software packages can efficiently leverage pre-exascale computing resources to screen hundreds of compounds in a matter of days. We report our results of free energy calculations on a large set of pharmaceutically relevant targets assembled to reflect industrial drug discovery projects.

View Article and Find Full Text PDF

Biliverdin IXβ reductase B (BLVRB) has recently been proposed as a novel therapeutic target for thrombocytopenia through its reactive oxygen species (ROS)-associated mechanism. Thus, we aim at repurposing drugs as new inhibitors of BLVRB. Based on IC (<5 μM), we have identified 20 compounds out of 1496 compounds from the Food and Drug Administration (FDA)-approved library and have clearly mapped their binding sites to the active site.

View Article and Find Full Text PDF

The accurate calculation of the binding free energy for arbitrary ligand-protein pairs is a considerable challenge in computer-aided drug discovery. Recently, it has been demonstrated that current state-of-the-art molecular dynamics (MD) based methods are capable of making highly accurate predictions. Conventional MD-based approaches rely on the first principles of statistical mechanics and assume equilibrium sampling of the phase space.

View Article and Find Full Text PDF