Philos Trans A Math Phys Eng Sci
June 2018
Glacial meltwater discharge from Antarctica is a key influence on the marine environment, impacting ocean circulation, sea level and productivity of the pelagic and benthic ecosystems. The responses elicited depend strongly on the characteristics of the meltwater releases, including timing, spatial structure and geochemical composition. Here we use isotopic tracers to reveal the time-varying pattern of meltwater during a discharge event from the Fourcade Glacier into Potter Cove, northern Antarctic Peninsula.
View Article and Find Full Text PDFPrevention of epibiosis is of vital importance for most aquatic organisms, which can have consequences for their ability to invade new areas. Surface microtopography of the shell periostracum has been shown to have antifouling properties for mytilid mussels, and the topography shows regional differences. This article examines whether an optimal shell design exists and evaluates the degree to which shell microstructure is matched with the properties of the local fouling community.
View Article and Find Full Text PDFBarnacle cypris larvae respond to many cues when selecting a settlement site. The settlement of over a million larvae on tiles of different textures, orientations and densities of incumbent settlers was measured on the rocky intertidal at Great Cumbrae, Scotland. Half of the tiles were replaced every tide whereas the others simultaneously accumulated settlers.
View Article and Find Full Text PDFMany marine invertebrate larvae respond behaviourally to environmental settlement cues, yet behaviours are often only inferred from settlement patterns or are limited to laboratory studies. The behaviour of wild cypris larvae of Semibalanus balanoides L. was filmed on settlement tiles in the field.
View Article and Find Full Text PDFShells of the blue mussel Mytilus edulis remain free of fouling organisms as long as they possess an intact periostracum, and a multiple antifouling defence that comprises a ripple-like microtopography and the production of chemical antifouling compounds has been suggested previously. This study investigates the chemical defence strategy of blue mussels for the first time. Six crude extracts of the periostracum of intact shells were made using solvents of increasing polarity.
View Article and Find Full Text PDFMarine organisms have evolved defence mechanisms to prevent epibiosis. This study investigated the anti-settlement properties of natural periostracal microtopographies of two mytilid species, Mytilus edulis (from North, Baltic and White Seas) and Perna perna (from the SW Atlantic). Resin replicas of shells were exposed to cyprids of the barnacle Semibalanus balanoides.
View Article and Find Full Text PDFMultiple antifouling strategies of marine organisms may consist of combinations of physical, chemical and mechanical mechanisms. In this study, the role of surface microtopography (< 500 microns) of different marine organisms, such as Cancer pagurus, Mytilus edulis, Ophiura texturata and the eggcase of Scyliorhinus canicula, has been investigated as a possible component of their defence systems. High resolution resin replicates of these natural surface structures were exposed to natural fouling in field experiments.
View Article and Find Full Text PDFPhys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics
August 1993