Publications by authors named "Berry van den Berg"

Both adults and children learn through feedback which environmental events and choices are associated with higher probability of reward, an ability thought to be supported by the development of fronto-striatal reward circuits. Recent developmental studies have applied computational models of reward learning to investigate such learning in children. However, tasks and measures effective for assaying the cascade of reward-learning neural processes in children have been limited.

View Article and Find Full Text PDF

Learned stimulus-reward associations can modulate behavior and the underlying neural processing of information. We investigated the cascade of these neurocognitive mechanisms involved in the learning of stimulus-reward associations. Using electroencephalogram recordings while participants performed a probabilistic spatial reward learning task, we observed that the feedback-related negativity component was more negative in response to loss feedback compared to gain feedback but showed no modulation by learning.

View Article and Find Full Text PDF

The magnitude and prospect of rewards can have strong modulatory effects on response preparation and execution. Importantly, reward-seeking behavior in real life happens under an environment characterized by uncertainty and dynamic changes. The current study investigated how the brain's motor and cognitive control system adapts to the dynamic changes in the environment in pursuit of rewards.

View Article and Find Full Text PDF

The mouse is widely used as an experimental model to study visual processing. To probe how the visual system detects changes in the environment, functional paradigms in freely behaving mice are strongly needed. We developed and validated the first EEG-based method to investigate visual deviance detection in freely behaving mice.

View Article and Find Full Text PDF

There is little published neuroscience research on the psychology of climate change. This review outlines how carefully designed experiments that measure key neural processes, linked to specific cognitive processes, can provide powerful tools to answer research questions in climate change psychology. We review relevant literature from social neuroscience that can be applicable to environmental research-the neural correlates of fairness and cooperation, altruistic behaviour and personal values-and discuss important factors when translating environmental psychology constructs to neuroscientific measurement.

View Article and Find Full Text PDF

In our daily lives, we continuously evaluate feedback information, update our knowledge, and adapt our behavior in order to reach desired goals. This ability to learn from feedback information, however, declines with age. Previous research has indicated that certain higher-level learning processes, such as feedback evaluation, integration of feedback information, and updating of knowledge, seem to be affected by age, and recent studies have shown how the adaption of choice behavior following feedback can differ with age.

View Article and Find Full Text PDF

The intake of caffeine and the prospect of reward have both been associated with increased arousal, enhanced attention, and improved behavioral performance on cognitive tasks, but how they interact to exert these effects is not well understood. To investigate this question, we had participants engage in a two-session cued-reward cognitive task while we recorded their electrical brain activity using scalp electroencephalography. The cue indicated whether monetary reward could be received for fast and accurate responses to a color-word Stroop stimulus that followed.

View Article and Find Full Text PDF

For ∼40 years, thinking about reasoning has been dominated by dual-process theories. This model, consisting of two distinct types of human reasoning, one fast and effortless and the other slow and deliberate, has also been applied to medical diagnosis. Medical experts are trained to diagnose patients based on their symptoms.

View Article and Find Full Text PDF

Successful adaptive behavior requires the learning of associations between stimulus-specific choices and rewarding outcomes. Most research on the mechanisms underlying such processes has focused on subcortical reward-processing regions, in conjunction with frontal circuits. Given the extensive stimulus-specific coding in the sensory cortices, we hypothesized they would play a key role in the learning of stimulus-specific reward associations.

View Article and Find Full Text PDF

Adult neuroimaging studies have demonstrated dissociable neural activation patterns in the visual cortex in response to letters (Latin alphabet) and numbers (Arabic numerals), which suggest a strong experiential influence of reading and mathematics on the human visual system. Here, developmental trajectories in the event-related potential (ERP) patterns evoked by visual processing of letters, numbers, and false fonts were examined in four different age groups (7-, 10-, 15-year-olds, and young adults). The 15-year-olds and adults showed greater neural sensitivity to letters over numbers in the left visual cortex and the reverse pattern in the right visual cortex, extending previous findings in adults to teenagers.

View Article and Find Full Text PDF

In visual conflict tasks (e.g., Stroop or flanker), response times (RTs) are generally longer on incongruent trials relative to congruent ones.

View Article and Find Full Text PDF

An individual's performance on cognitive and perceptual tasks varies considerably across time and circumstances. We investigated neural mechanisms underlying such performance variability using regression-based analyses to examine trial-by-trial relationships between response times (RTs) and different facets of electrical brain activity. Thirteen participants trained five days on a color-popout visual-search task, with EEG recorded on days one and five.

View Article and Find Full Text PDF

When attending for impending visual stimuli, cognitive systems prepare to identify relevant information while ignoring irrelevant, potentially distracting input. Recent work (Marini et al., 2013) showed that a supramodal distracter-filtering mechanism is invoked in blocked designs involving expectation of possible distracter stimuli, although this entails a cost () on speeded performance when distracters are expected but not presented.

View Article and Find Full Text PDF

Practice can improve performance on visual search tasks; the neural mechanisms underlying such improvements, however, are not clear. Response time typically shortens with practice, but which components of the stimulus-response processing chain facilitate this behavioral change? Improved search performance could result from enhancements in various cognitive processing stages, including (1) sensory processing, (2) attentional allocation, (3) target discrimination, (4) motor-response preparation, and/or (5) response execution. We measured event-related potentials (ERPs) as human participants completed a five-day visual-search protocol in which they reported the orientation of a color popout target within an array of ellipses.

View Article and Find Full Text PDF

The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive task performance.

View Article and Find Full Text PDF