Myasthenia gravis (MG) is an autoimmune disease characterized by muscle fatigability due to acetylcholine receptor (AChR) autoantibodies. To better characterize juvenile MG (JMG), we analyzed 85 pre- and 132 post-pubescent JMG (with a cutoff age of 13) compared to 721 adult MG patients under 40 years old using a French database. Clinical data, anti-AChR antibody titers, thymectomy, and thymic histology were analyzed.
View Article and Find Full Text PDFObjectives: This study aims to explore the impact of myasthenia gravis (MG) - in terms of treatments, side effects, comorbidities, psychological health and work or study- in the real world from a patient perspective.
Design And Participants: This is a prospective, observational, digital, longitudinal study. Adults diagnosed with MG residing in the USA, Japan, Germany, the UK, Italy, Spain or Canada were eligible to participate in the study.
Myasthenia Gravis (MG) is a neurological autoimmune disease characterized by disabling muscle weaknesses due to anti-acetylcholine receptor (AChR) autoantibodies. To gain insight into immune dysregulation underlying early-onset AChR MG, we performed an in-depth analysis of peripheral mononuclear blood cells (PBMCs) using mass cytometry. PBMCs from 24 AChR MG patients without thymoma and 16 controls were stained with a panel of 37 antibodies.
View Article and Find Full Text PDFObjectives: Myasthenia gravis (MG) is a rare, chronic, autoimmune neuromuscular disease which can affect functional and mental aspects of health and health-related quality of life (HRQoL). This study aims to obtain detailed knowledge of the impact of MG on HRQoL in a broad population from the perspective of the patient.
Design: Prospective, observational, digital, longitudinal real-world study.
Acetylcholine receptor (AChR) myasthenia gravis (MG) is a chronic autoimmune disease characterized by muscle weakness. The AChR autoantibodies are produced by B-cells located in thymic ectopic germinal centers (eGC). No therapeutic approach is curative.
View Article and Find Full Text PDFObjective: Myasthenia gravis (MG) is a neuromuscular disease mediated by antibodies against the acetylcholine receptor (AChR). The thymus plays a primary role in AChR-MG and is characterized by a type I interferon (IFN) signature linked to IFN-β. We investigated if AChR-MG was characterized by an IFN-I signature in the blood, and further investigated the chronic thymic IFN-I signature.
View Article and Find Full Text PDFMyasthenia gravis (MG) is a rare autoimmune disease mediated by antibodies against components of the neuromuscular junction, particularly the acetylcholine receptor (AChR). The thymus plays a primary role in AChR-MG patients. In early-onset AChR-MG and thymoma-associated MG, an interferon type I (IFN-I) signature is clearly detected in the thymus.
View Article and Find Full Text PDFPredisposition to autoimmunity and inflammatory disorders is observed in patients with fragile X-associated syndromes. These patients have increased numbers of CGG triplets in the 5' UTR region of FMR1 (Fragile X Mental Retardation 1) gene, that affects its expression. FMR1 is decreased in the thymus of myasthenia gravis (MG) patients, a prototypical autoimmune disease.
View Article and Find Full Text PDFNeuromuscul Disord
August 2021
The tolerance of exercise and its effects on quality of life in myasthenia gravis are not currently backed up by strong evidence. The aim of this study was to determine whether exercise as an adjunct therapy is well tolerated and can improve health-related quality of life (HRQoL) in stabilized, generalized autoimmune myasthenia gravis (gMG). We conducted a parallel-group, multi-center prospective RCT using computer-generated block randomization.
View Article and Find Full Text PDFIntroduction: Myasthenia gravis (MG) is a rare, chronic, autoimmune disease, mediated by immunoglobulin G antibodies, which causes debilitating muscle weakness. As with most rare diseases, there is little patient-reported data with which to understand and address patient needs. This study explores the impact of MG in the real world from the patient perspective.
View Article and Find Full Text PDFBackground: Myasthenia gravis (MG) is a rare autoimmune disease mainly mediated by autoantibodies against the acetylcholine receptor (AChR) at the neuromuscular junction. The thymus is the effector organ, and its removal alleviates the symptoms of the disease. In the early-onset form of MG, the thymus displays functional and morphological abnormalities such as B cell infiltration leading to follicular hyperplasia, and the production of AChR antibodies.
View Article and Find Full Text PDFThe thymus is involved in autoimmune Myasthenia gravis (MG) associated with anti-acetylcholine (AChR) antibodies. In MG, thymic regulatory T cells (Treg) are not efficiently suppressive, and conventional T cells (Tconv) are resistant to suppression. To better understand the specific role of the thymus in MG, we compared the phenotype and function of peripheral and thymic Treg and Tconv from controls and MG patients.
View Article and Find Full Text PDFIn western countries, the slope of autoimmune disease (AD) incidence is increasing and affects 5-8% of the population. Mainly prevalent in women, these pathologies are due to thymic tolerance processes breakdown. The female sex hormone, estrogen, is involved in this AD female susceptibility.
View Article and Find Full Text PDFMyasthenia gravis (MG) is a rare autoimmune disease mediated by pathogenic antibodies (Ab) directed against components of the neuromuscular junction (NMJ), mainly the acetylcholine receptor (AChR). The etiological mechanisms are not totally elucidated, but they include a combination of genetic predisposition, triggering event(s), and hormonal components. MG disease is associated with defective immune regulation, chronic cell activation, inflammation, and the thymus is frequently abnormal.
View Article and Find Full Text PDFThymomas are associated with a very high risk of developing Myasthenia Gravis (MG). Our objectives were to identify histological and biological parameters to allow early diagnosis of thymoma patients susceptible to developing MG. We conducted a detailed retrospective analysis from a patient database, searching for differences between patients with thymoma-associated MG (MGT, n = 409) and thymoma without MG (TOMA, n = 111) in comparison with nonthymomatous MG patients (MG, n = 1246).
View Article and Find Full Text PDFAutoimmune Myasthenia gravis (MG) is a chronic neuromuscular disease mainly due to antibodies against the acetylcholine receptor (AChR) at the neuromuscular junction that induce invalidating muscle weaknesses. In early-onset MG, the thymus is the effector organ and is often characterized by B-cell infiltrations leading to ectopic germinal center (GC) development. The microRNA miR-150-5p has been previously characterized as a biomarker in MG due to its increase in the serum of patients and its decrease after thymectomy, correlated with an improvement of symptoms.
View Article and Find Full Text PDFIL-23/Th17 pathway has been identified to sustain inflammatory condition in several autoimmune diseases and therefore being targeted in various therapeutic and effective approaches. Patients affected with autoimmune myasthenia gravis exhibit a disease effector tissue, the thymus, that harbors ectopic germinal centers that sustain production of auto-antibodies, targeting proteins located in the neuromuscular junction, cause of the organ-specific chronic autoimmune disease. The present study aims to investigate the IL-23/Th17 cell pathway in the thymic inflammatory and pathogenic events.
View Article and Find Full Text PDFAnn Clin Transl Neurol
November 2018
We analyzed the number and functionality of regulatory B (Breg) cells in well-defined myasthenia gravis patients. We first showed a decreased number of circulating CD19 CD24 CD38 Breg cells and an altered functionality of Breg cells in untreated myasthenia gravis patients. Next, we demonstrated that the proportion of circulating Breg cells was restored in myasthenia gravis patients after thymectomy, probably as Breg cells could be sequestered in the myasthenia gravis thymus.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFIn early-onset Myasthenia Gravis (MG) with anti-acetylcholine receptor antibodies, thymic abnormalities associated with ectopic germinal centers are frequent. miRNAs by acting as post-transcriptional regulators are involved in autoimmunity. To investigate the implication of miRNAs in thymic changes associated with early-onset MG, we performed a miRnome study and data were analyzed with different approaches.
View Article and Find Full Text PDFA chronic autoimmune disease, myasthenia gravis (MG) is characterized in 85% of patients by antibodies directed against the acetylcholine receptor (AChR) located at the neuromuscular junction. The functional and effective balance between regulatory T cells (T cells) and effector T cells (T cells) is lost in the hyperplastic thymus of MG patients with antibodies specific for the AChR (AChR MG patients). The objective of this review is to describe how T cells and inflammatory T cells participate in this imbalance and contribute to induce a chronic inflammatory state in the MG thymus.
View Article and Find Full Text PDFAutoimmune diseases (AIDs) are chronic disorders characterized by inflammatory reactions against self-antigens that can be either systemic or organ specific. AIDs can differ in their epidemiologic features and clinical presentations, yet all share a remarkable complexity. AIDs result from an interplay of genetic and epigenetic factors with environmental components that are associated with imbalances in the immune system.
View Article and Find Full Text PDF