Defibrillators often use an ac measurement to ensure safe electrode placement. Some defibrillators also utilize impedance measurements for ventilation monitoring. This paper investigates how such measurements can be optimized for high respiration sensitivity and finds that it is beneficial to add two extra electrodes in addition to the two defibrillator electrodes.
View Article and Find Full Text PDFUsing low-frequency (LF) alternating current skin conductance (SC) has recently been recommended for electrodermal activity (EDA) measurement, but the method may imply some limitations in sampling rate, which are insufficient for capturing the complete SC waveform. The aim of this study was to assess whether LF SC can be estimated based on skin admittance (SA) measurements at higher frequencies allowing higher sampling rates. SA measurements from 1 Hz to 70 kHz were gathered from 20 healthy human participants, and an interval from 500 Hz to 10 kHz was used to fit a Cole model to the measured SA by means of the nonlinear least squares method.
View Article and Find Full Text PDFThis paper addresses the problem of calculating the bioimpedance phase angle from measurements of impedance modulus. A complete impedance measurement was performed on altogether 20 healthy persons using a Solatron 1260/1294 system. The obtained impedance modulus (absolute impedance value) values were used to calculate the Cole parameters and from them the phase angles.
View Article and Find Full Text PDFWe present experimental findings regarding variability and stability of the electrical impedance properties of medical grade stainless steel needle electrodes in vitro. Monopolar impedance spectra (1 Hz to 1 MHz) were measured and scanning electron microscope images were obtained for five needle types with active electrode area from 0.28 to 0.
View Article and Find Full Text PDFWe present a novel method for localization of large blood vessels using a bioimpedance based needle positioning system on an array of ten monopolar needle electrodes. The purpose of the study is to develop a portable, low cost tool for rapid vascular access for cooling and controlled reperfusion of cardiac arrest patients. Preliminary results show that localization of blood vessels is feasible with this method, but larger studies are necessary to improve the technology.
View Article and Find Full Text PDF